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Abstract: The well known Nakano–Nishijima–Gell-Mann (NNG) formula relates certain quantum
numbers of elementary particles to their charge number. This equation, which phenomenologically
introduces the quantum numbers Iz (isospin), S (strangeness), etc., is constructed using group theory
with real numbers R. But, using a discrete Galois field Fp instead of R and assuring the fundamental
invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG
formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified
way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by
coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g., three).

Keywords: quantum theory; finite mathematics; Nakano–Nishijima–Gell-Mann formula; fractional
quantum number; quark confinement

1. Introduction

The standard model of particle physics has been established based on physics with real
numbers (R). However, problems such as the problem of infinite in gravity are yet unsolved.
To avoid such problems, quantum gravity theories like superstring theory or loop quantum gravity
are developing, but neither of those theories has been completed. On the other hand, the assumption
that all of the physics in the universe is constructed solely of R has not been proved. For instance,
Yukawa considered extended wave function of elementary particles using “elementary domains” [1]
and Snyder [2] and Finkelstein [3] simply considered quantization of space-time. However,
these approaches are incomplete and a unified formulation is unknown. Here, we assert that a
different mathematical structure, namely a world with a finite [4] and discrete space-time [5–14],
is needed for the following reasons.

The description of a discrete space-time would require a discrete mathematical structure. Unitary
transformation from quantum mechanics and Lorentz (Möbius) transformation from relativity requires
this structure to be a number field, where addition, subtraction, multiplication, and division can be
defined. The set of integers Z is not a field because division is not defined. For instance, fractional
numbers such as 1/3 are not defined. What we would consider in this paper is called a Galois field
(Fp = Z/pZ), that is, the set of integers where two numbers differing by a multiple of a prime number
p are equivalent [5–14]. Fp has a finite, periodic, and discrete structure. Mathematical and physical
justification to consider this field are as follows.
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Mathematically, there is another system called p-adic numbers Qp (p : prime) that is equivalent to
R [15]. Qp is regarded as the limit of p-adic integers Z/pnZ with n→ ∞.

Z/pZ,Z/p2Z,Z/p3Z, · · · ,Z/pnZ n→∞−→ Qp.

Moreover, In adele ring theory, R is regarded as the limit of Qp with p→ ∞ [16].

Q2,Q3,Q5, · · · ,Qp
p→∞−→ R.

So, from the viewpoint of number theory, the geometry constructed by the real numbers R is only an
approximation of a finite and discrete geometry [11,17]. Physics over R may be obtained from physics
over Fp under the appropriate limit.

Physically, Galois fields can appear naturally in our universe from multiple perspectives. First,
recent observation of microwave background radiation suggests that the world is finite and periodic
(I120: Poincaré Dodecahedron) [4]. Second, if space-time has the Planck length as a characteristic
scale, then Lorentz transformation must be discrete [18]. Theoretically, Jarnefelt estimated a huge
but finite number of world coordinates as 101081

[5,7,19]. Third, the theory of quantum gravity needs
to be expanded because of the difficulty of renormalizability. This problem would not appear in Fp

in the first place [5,6,13,14], so the expansion is expected to be achieved by using a discrete system.
In standard particle physics theory, the existence of antiparticles depends on additional assumptions,
while in the Galois field such strange assumptions are not necessary [13]. Fourth, the field theory of
Galois field was investigated by Nambu in the context of recurrence time [6]. Recently, the discreteness
of time is also discussed the context of time crystals [20–24]. So, if space-time is both finite and discrete,
we have to re-examine the laws of physics [6].

In this article, we re-examine a previous model and classify hadrons by using a discrete Galois
field Fp. When we reconstruct new theories with a Galois field, these new theories must satisfy
fundamental conservation laws, namely those related to unitarity, Lorentz invariance, and gauge
invariance. Consequently, instead of the Nakano–Nishijima–Gell-Mann (NNG) formula (which is
proposed using continuous coordinate R), we obtained the alternate formula Q = 2(n + I), where Q is
charge number, n is multivaluedness in Galois field, and I is total isospin. This formula is derived from
Meson (two quarks) and Baryon (three quarks) representations in a unified way. The use of isospin
was not investigated in detail by previous authors [5,7–12,19,25] who introduced finite geometry into
the field theory. Since the NNG formula also applies to individual quarks, we apply the new formula
to up-quark and down-quark, which inevitably lead to fractional numbers. Fractional numbers in
Galois fields are, however, very large numbers. Therefore, isolated quarks with fractional charge can
have a very large energy. We surmise that quark confinement ascribes to this fractionality in Galois field.
These results may be a starting point to develop a theory without problems of infinity.

2. Galois Field

Here, we introduce the Galois fields Fp and Fp2 . A number field is a mathematical structure where
addition, subtraction, multiplication and division are defined. Let Z/mZ be the set of integers where
two numbers differing by an integral multiple of m ∈ Z are regarded equivalent. A well-known result
from number theory is that Z/mZ is a number field if and only if m is a prime number. This finite field
is called a Galois field which is denoted by Fp:

Fp = {0, 1, 2, . . . , p− 1}. (1)

A Galois field is not an ordered field. But, as was made clear in Reference [25], Fp can be partially
ordered if p has the form

p = 8x
k

∏
i=1

qi − 1 (2)
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where x is an odd integer and ∏i qi is the product of the first k odd primes. So, the usual notion of
magnitude (large and small) and sign (positive and negative) hold for the first N ∼ qk ∼ lnp elements.
Therefore, we consider a prime of the form in Equation (2) which is assumed to be large enough to
construct a geometry containing all coordinates in the universe.

Quantum mechanics requires complex numbers. To consider complex numbers in a Galois field,
it is natural to take an analogue of the ordinary extension of real numbers to complex numbers. That is
to say, the set of “complex” numbers

z = x + iy, (x, y ∈ Fp) (3)

i2 = −1 (4)

is a “complex” Galois field which is denoted by Fp2 . For a prime p of the form p = 4n − 1 (n ∈ Z),
complex conjugation is given by ip = −i = i∗ and zp = x− iy = z∗ since we have

(x + iy)p = xp − iyp = x− iy. (5)

The first equality holds because p is a character of the field, that is p · a = 0 for all a ∈ Fp; The second
equality follows from Fermat’s little theorem ap ≡ a mod p. Note that |z|2 can become negative for the
non-ordered part of Fp.

3. Lorentz Group in a Galois Field: The Coish Group

Lorentz transformation can be recovered with the Galois field introduced in the previous
section [5,8,11,12]. Coordinates in Minkowski space-time are closely related to spinor structure through
the Pauli matrix representation

X =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
= x01 + x1σ1 + x2σ2 + x3σ3 (6)

where x0, x1, x2, x3 ∈ Fp and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are Pauli matrices. (See Reference [26] for the case of xµ ∈ R.) The metric form is given as the
determinant of X:

‖X‖ = x2
0 − x2

1 − x2
2 − x2

3. (7)

Let a be a 2 × 2 matrix with coefficients in Fp2 . The linear transformation

X
′
= a†Xa (8)

is a proper Lorentz transformation if it leaves the metric form Equation (7) invariant, that is,
if ‖a‖∗‖a‖ = ‖a‖p+1 = 1 holds. Such matrices form the orthogonal group SL(2,Fp2). In finite
geometry, however, there also exist transformations with ‖a‖p+1 = −1 which reverse the sign of the
metric [5].

In addition, suppose that matrices a1 and a2 lead to the same Lorentz transformation.
Then U ≡ a1a−1

2 transforms X as
U†XU = X. (9)

Since the set of X contains the identity matrix, Equation (9) leads to U†U = UU† = 1. So, U is a unitary
matrix of the form

U = λ1. (10)
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Given that U is unitary, λ satisfies

λ∗λ = 1. (11)

In a Galois field, such λ become discrete and multivalued. That is, for a prime p of the form p = 4n− 1
(such as in Equation (2)) we have

λ = ωα , a1 = ωαa2. (12)

where α = 0, 1, · · · , p. So, the the orthogonal group in a Galois field has p + 1 multivaluedness as
with a cyclotomic field, and ω acts as a phase factor (Figure 1). In this way, we obtain the full Coish
group. The spinor group, which is a subgroup of the rotational group, has the same multivaluedness.
This multivaluedness will plays an essential role for the classification of hadrons.

Figure 1. Schematic representation of the discrete multivaluedness with phase factor ω. Each set of
Fp2 constitutes a cyclotomic field. When p = 4n− 1, the field has p + 1 elements. A Lorentz group in
a Galois field has p + 1 multivaluedness such as ωαa, α = 0, 1, · · · , p. Regarding ω as a phase factor,
it constitute a global gauge transformation in a Galois field.

4. Gauge Transformation in Galois Field

In this section, the charge number Q is derived with gauge transformation in Galois field in
accordance with the derivation given in Reference [5]. Because of homomorphism, an orthogonal
group leads a spinor group. The irreducible representation of the orthogonal group must be a matrix
with elements of Fp2 as its coefficients. The spinor group is a subgroup of of the two dimensional
general linear homogeneous Galois group GLH(2, p2) over the complex finite field Fp2 . The irreducible
representations of GLH(2, p2) are given by Brauer and Nesbitt [27] and extended by Coish [5] as

‖a‖na(2j) ⊗ ā(2k), (13)

where

j, k = 0, 1/2, 1, 3/2, · · · (p− 1)/2, (14)

n = 0, ±1/2, ±1, · · · ± (p + 1/2), p + 1. (15)

Here, a is a spinor matrix which transforms a spinor(
ψ1

ψ2

)
→
(

ψ′1
ψ′2

)
= a

(
ψ1

ψ2

)
. (16)
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‖a‖n is interpreted as the multivaluedness of the representation. Next, consider the polynomial

f (ψ) =
j

∑
m=−j

fmψ
j+m
1 ψ

j−m
2 . (17)

The set
{

ψ
j+m
1 ψ

j−m
2

}
can be regarded as the linearly independent set of basis for a (2j + 1)-dimensional

vector space. The action of a on f (ψ) is given by

f (aψ) =
j

∑
m=−j

fm(ψ
′
1)

j+m(ψ′2)
j−m =

j

∑
m=−j

fma(2j)
mn ψ

j+n
1 ψ

j−n
2 . (18)

So, a(2j) is a matrix transforming the monomials ψ
j+m
1 ψ

j−m
2 . In particular, the phase factor ωα

transforms a→ ωαa and a(2j) → ω2jαa(2j). This phase factor corresponds to a gauge transformation,
and Equation (13) is transformed as follows

‖a‖na(2j) ⊗ ā(2k) −→ ωQα‖a‖na(2j) ⊗ ā(2k), (19)

where
Q = 2(n + j− k). (20)

Therefore, we naturally derive Equation (20) as the charge number reflecting discreteness of gauge
transformation in Galois field.

5. Classification of Hadrons

Now, we can classify Hadrons in a Galois field. Coish interpreted j and k as spins and represented
baryons and mesons with Equations (13) and (20). However, his model does not agree with the
standard model of particle physics. So, we give a different interpretation. Instead of spins, we interpret
j and k as isospin. More precisely, to encompass the multiplet structure of hadrons, it would be
appropriate to interpret j, k as the total isospin I instead of Iz. Mesons, which are composed of particles
and anti-particles, are transformed by the representation

D(j,−k,n)
meason ≡ ‖a‖na(2j) ⊗ ā(2k), (21)

but it is now interpreted as a representation of GLH(2, p2) × GLH(2, p2)∗. Baryons, which are
composed of three quarks, are transformed by another representation

D(i,j,k,n)
baryon ≡ ‖a‖

na(2i) ⊗ a(2j) ⊗ a(2k) (22)

of GLH(2, p2) × GLH(2, p2) × GLH(2, p2). Here, the contribution of strangeness appears as a
modification of the multivaluedness n.

Mesons and baryons can be classified according to the charge number

Q = 2(n + I), (23)

where I = j− k for mesons and I = i + j + k for baryons.
Tables 1 and 2, respectively, show quantum numbers and representations of mesons and baryons

in a Galois field. Here, we did not use SU(3) symmetry but assume the known quark contents.
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Table 1. Quantum numbers of mesons in a Galois field. Q is the charge number of baryon and j, k are
total isospins of quarks. n is derived from Equation (23).

Meson Q n I j k Representation

K+ 1 0 1/2 1/2 0 ‖a‖0a(1) ⊗ ā(0)

K0 0 −1/2 1/2 1/2 0 ‖a‖− 1
2 a(1) ⊗ ā(0)

π+ 1 1/2 0 1/2 1/2 ‖a‖ 1
2 a(1) ⊗ ā(1)

π0 0 0 0 1/2 1/2 ‖a‖0a(1) ⊗ ā(1)

π− −1 −1/2 0 1/2 1/2 ‖a‖− 1
2 a(1) ⊗ ā(1)

K̄0 0 1/2 −1/2 0 1/2 ‖a‖ 1
2 a(0) ⊗ ā(1)

K− −1 0 −1/2 0 1/2 ‖a‖0a(0) ⊗ ā(1)

Table 2. Quantum numbers of baryons in a Galois field. Q is the charge number of baryon and i, j, k
are total isospins of quark. n is derived from Equation (23).

Baryon Q n I i j k Representation

p 1 −1 3/2 1/2 1/2 1/2 ‖a‖−1a(1) ⊗ a(1) ⊗ a(1)

n 0 −3/2 3/2 1/2 1/2 1/2 ‖a‖− 3
2 a(1) ⊗ a(1) ⊗ a(1)

Σ+ 1 −1/2 1 1/2 1/2 0 ‖a‖− 1
2 a(1) ⊗ a(1) ⊗ a(0)

Σ0 0 −1 1 1/2 1/2 0 ‖a‖−1a(1) ⊗ a(1) ⊗ a(0)

Σ− −1 −3/2 1 1/2 1/2 0 ‖a‖− 3
2 a(1) ⊗ a(1) ⊗ a(0)

Ξ0 0 −1/2 1/2 1/2 0 0 ‖a‖− 1
2 a(1) ⊗ a(0) ⊗ a(0)

Ξ− −1 −1 1/2 1/2 0 0 ‖a‖−1a(1) ⊗ a(0) ⊗ a(0)

We derived Equation (23) equivalent to the NNG formula

Q = Iz +
Y
2

, (24)

where Y is the hypercharge. Figure 2 shows the classification of hadrons with n and I. Particles and
anti-particles are related by CP conjugation (that is, point symmetry around the origin n = I = 0) as in
Reference [5]. Different values of I indicate the multiplet structure of hadrons. By comparison with the
NNG formula, n includes both the isospin Iz and the hypercharge Y. In this way, Galois fields can be
used to organize the quantum number of hadrons. Similarly, as it is well known, the quantum number
of leptons are related with an equation similar to the NNG formula; the origins of the weak isospin
and weak hypercharge, which are properties of leptons introduced phenomenologically, may also be
explained by the Galois field.
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Figure 2. Classification of hadrons with Equation (23). Our model take the n and I axis instead of Y
and Iz. We did not use SU(3) symmetry but assume the same quark constituent as in the standard
model of particle physics. Charge numbers such as Q = 2/3 = 2 · 3p−2 mod p are shown in Figure 3.
Note that this figure superimposes baryons, anti-bayons, and mesons, which differ by baryon numbers.
So, K0 and Ξ0, for instance, are distinguished.

More generally, we can give a unified representation for arbitrary composit particles. First, we
can give a representation of a single particle as ‖a‖na(2j). Likewise, a representation of particles with
N (= 2, 3, 4, 5 or higher) constituents is possible with

N⊗
l=1

‖a‖nl a(2jl)θνl (25)

where jl are half-integers, νl = 0 or 1, θ0 is the identity map a(2j)θ0 = a(2j), and θ1 maps a(2j) to the
conjugate group a(2j)θ1 = ā(2j) with coefficients αp1

= a∗ (c.f. References [5,27]). Then, the charge
number is given by Q = ∑N

l=1 2(nl ± jl) where plus and minus correspond to νl = 0 and νl = 1,
respectively. This includes a representation of mesons, baryons, pentaquark, and so on, in a unified way.
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6. Quark Confinement

Finally, we provide a possible approach toward quark confinement which ascribes to fractionality
in Galois field.

Suppose for the moment that up-quark and down-quark can be described by the following
irreducible representation of GLH(2, p2):

au = ‖a‖nu a(1), ad = ‖a‖nd a(1). (26)

We expect that proton and neutron can be expressed as ap = au ⊗ au ⊗ ad and an = au ⊗ ad ⊗ ad,
respectively. Then, the quantum numbers of proton and neutron can be written in terms of their
constituent quarks as follows:

np = 2nu + nd, (27)

nn = nu + 2nd, (28)

Ip = In = I. (29)

Substitute this decomposition into Equation (23) and we obtain

Qp = 2(2nu + nd + I), Qn = 2(nu + 2nd + I). (30)

Then, we can solve for nu and nd

nu =
2Qp −Qn − 2I

6
, nd =

2Qn −Qp − 2I
6

. (31)

Taking the values Qp = 1, Qn = 0 and I = 3/2 as in Table 2 we obtain

nu = −1
6

, nd = −2
3

, (32)

which are not half-integers as in (15). Therefore, irreducible representations of quarks as in
Equation (26) is not possible.

Now, suppose that we can nevertheless write the corresponding charge numbers as elements of
Fp. Then, we obtain Qu = 2/3 and Qd = −1/3. Counterintuitively, these fractional quantum numbers
in Fp are very large, which can be shown as follows. The modular inverses in of an integer a in Fp is
defined by

a−1a ≡ 1 mod p. (33)

On the other hand, from Fermat’s little theorem

ap−1 ≡ 1 mod p (34)

we obtain
a−1 ≡ ap−2 mod p. (35)

The prime given by Equation (2) contains the first odd prime q1 = 3, so it has the form p = 3n− 1 for
some n ∈ N. In this case, the fractional number 1/3 in Fp takes the value 3−1 = (p+ 1)/3 (see Figure 3).
Therefore, fractional numbers in Galois field are large numbers of order p. Consequently, isolated quark
can have, for instance a huge electromagnetic self-energy (Figure 4). In this case, quark confinement in
Fp may be a consequence of energy minimization.
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Figure 3. The values of 1/3 = 3p−2 mod p = (p + 1)/3 and 2/3 = 2 · 3p−2 mod p = 2(p + 1)/3 are
shown for the primes of the form p = 3n− 1. Fractional numbers in a Galois field are large numbers
proportional to p.

Figure 4. Electromagnetic self-energy Eem = ke
Q2

2a c2 where Q is the charge number in Galois field, ke

is the Coulomb constant, a is the classical electron radius, and c is the speed of light. The energy is
independent of p for integral charge but increase for fractional charge. The GUT energy is shown as a
rough standard.

7. Discussion and Conclusions

Finally, we summarize and discuss our results. The NNG formula is a phenomenological equation.
By using a Galois field, the NNG Formula (24) is rewritten as (23). The new quantum number n, which
includes isospin Iz and hypercharge Y, arises from the multivaluedness of a linear representation of
the Galois field. We also discussed quark confinement which ascribes to fractionality of Galois field.
After all, these results may indicate finiteness and discreteness of the world. While such a method
is unconventional, it is not inherently inconsistent under one assumption, namely that the geometry
constructed by the real numbers R is only an approximation of a finite and discrete geometry [11,17].
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As future developments, we expect that composite particles such as pentaquarks [28–30] can
be explained by generalizing Equation (25) to any number of particles and combining the quantum
numbers n and I to a single “grand spin” as discussed in [30]. We expect that the inclusion of other
flavors such as c (charm), t (top) and b (bottom) would require extension of our result to GLH(3, p2)

(analogous to SU(3)), GLH(4, p2), and so on, which goes in parallel to the extension of SU(2) to SU(3) or
higher. Representation of particles in Figure 2 can be modified accordingly. This extention can be done
based on previous studies [31] and using a method equivalent to the “enlarging lemma” [32]. Recently,
with the development of quantum information, Galois fields have begun to be used to construct
space-time models as error-correcting codes [33]. Further application of Galois fields is expected in the
foundation of quantum physics [34] and time crystal with discrete space-time symmetry [20–24].
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