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Abstract – We investigate the charge density wave transport in a quasi–one-dimensional conduc-
tor, orthorhombic tantalum trisulfide (o-TaS3), by applying a radio-frequency ac voltage. We find
a new ac-dc interference spectrum in the differential conductance, which appears on both sides
of the zero-bias peak. The frequency and amplitude dependences of the new spectrum do not
correspond to those of any usual ac-dc interference spectrum (Shapiro steps). The results suggest
that CDW phase dynamics has a hidden degree of freedom. We propose a model in which 2π
phase solitons behave as liquid. The origin of the new spectrum is that the solitons are depinned
from impurity potentials assisted by an ac field when a small dc field is applied. Our results
provide a new insight as regards our understanding of an elementary process in CDW dynamics.

Copyright c© EPLA, 2015

Introduction. – Phase solitons are topological defects
in the phase field of a charge density wave (CDW) [1]
and are similar to the vortices in superconductors and el-
ementary excitation in a vacuum. The degree of freedom
of the phase soliton is the key to understanding the na-
ture of a CDW. Phase solitons have been expected in the
one-dimensional CDW system of orthorhombic tantalum
trisulfide (o-TaS3) crystals to explain the CDW transport
properties [2–4], and the Aharonov-Bohm interference in
o-TaS3 rings [5,6]. In addition, the coexistence of commen-
surate and incommensurate CDWs in o-TaS3 crystals was
observed below the Peierls transition temperature TP =
218 K by X-ray diffraction [7]. The satellite peaks of the
incommensurate CDW of Qic ∼ 0.5a∗ + 0.125b∗ + 0.255c∗

develop first just below TP, and those of the commensurate
CDW of Qc = 0.5a∗ + 0.125b∗ + 0.25c∗ develop with the
decrease of temperature. Furthermore, the incommensu-
rate CDW was enhanced when the CDW was sliding. The
results suggest that there are unconventional degrees of
freedom associated with the solitons, and that they will
affect CDW dynamics.

In this letter, CDW dynamics in o-TaS3 crystals is inves-
tigated using a conventional ac-dc interference measure-
ment in the temperature range where the commensurate
and incommensurate CDWs coexist. We find a new type

of ac-dc interference spectrum, which does not originate
from the usual Shapiro interference mechanism. The re-
sults suggest that an o-TaS3 CDW system has 2π phase
solitons. The solitons are depinned from impurities and
move individually as a liquid when a large ac electric field
is applied.

Experimental. – The ac-dc interference measurement
was performed as follows. The o-TaS3 crystals were syn-
thesized using the chemical vapor transport method [8,9].
A needle-shaped o-TaS3 crystal was selected and placed on
a sapphire substrate, and two silver wires were connected
to the crystal with gold evaporation films and silver paste
for the two-probe measurement. The resistance of the
sample present here was 7 Ω at room temperature (280 K).
The cross-section area of the sample was 16 × 7 μm2, the
minimum distance between two terminals was 110 μm, and
the room temperature resistivity was consistent with a
previously reported value [10]. The differential conduc-
tance of o-TaS3 crystals was measured as a function of
dc bias current while applying a radio-frequency (RF) ac
voltage. A differential conductance measurement with a
lock-in amplifier (Stanford Research SR830DSP: a low-
frequency (LF) ac current ILF = 1 μA, and fLF = 13 Hz)
was performed. The sample temperature was controlled
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Fig. 1: (Colour on-line) (a) Differential conductance of a o-TaS3

crystal at 150 K when applying a RF ac voltage of fRF = 1MHz
as a function of dc bias current Idc. Dc bias current swept
from negative to positive for all dV/dI vs. Idc curves. The
low-field conductivity for VRF = 0mV is R−1

N = 5.0 × 10−3 S.
(b) The magnification of a differential conductance curve for
VRF = 160 mV. New ac-dc interference peaks and the first
Shapiro interference peaks are indicated by the red and black
arrows, respectively.

by using liquid nitrogen and an electrical heater with a
±0.1 K accuracy.

Results. – Figure 1(a) shows the differential conduc-
tance of the o-TaS3 crystal as a function of the dc bias cur-
rent at 150 K, when we applied an ac voltage of 1 MHz with
various amplitudes. The threshold current and voltage
were Ith = 0.35 mA and Vth = 70 mV (Eth = 636 V/m)
for VRF = 0, respectively, and the zero-bias peak became
sharper when VRF increased, then the unusual peaks ap-
peared on both sides of the zero-bias peak for VRF =
160 mV (see also the peaks indicated by red arrows in
fig. 1(b)). We note that the vertical shifts of the dI/dV
curves in fig. 1(a) are not artificial, but mean that there
are several CDW phase domains. A major domain gives
the Shapiro interference peaks indicated by black arrows in
fig. 1, but other domains move incoherently. The thresh-
old electric field of the sample was relatively larger than
those reported in the previous papers. One reason is that
it was a two-probe transport measurement. Generally the
threshold voltage observed by two-probe transport mea-
surement is observed larger than that by four-probe trans-
port measurement since the charge density wave phase
distortion and phase slip must be involved.

The new peak structures appearing under ac and dc
electric fields have never been reported explicitly before.
On the other hand, the step structures in the dI/dV curve
have been often observed in NbSe3 crystals [11,12], and
other quasi–one-dimensional conductors. The step struc-
tures in the dI/dV curve are clearly different from these
new peak structures, since there is no decrease of dI/dV in
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Fig. 2: (Colour on-line) (a) Frequency dependence of dI/dV
vs. Idc curves at T = 150 K. The applied external ac voltage
is VRF = 200 mV. The curves are vertically shifted for clarity.
The red and black arrows indicate new ac-dc interference peaks
and the first Shapiro step peaks, respectively. (b) Intervals
between positive and negative dc CDW current (I(±)

CDW = I
(±)
dc −

R−1
N V

(±)
dc ) of the new peaks and the first Shapiro peaks as a

function of VRF for fRF = 1MHz and (c) as a function of fRF

for VRF = 200 mV, both at 150 K. The solid lines are linear
fitting curves.

the step structures. In addition, a Joule heat effect cannot
explain the decrease in the differential conductivity be-
cause the conductivity of o-TaS3 crystals should increases
when the temperature increases [10] (see also fig. 3 inset).

The RF amplitude and frequency dependences of the
current at the new peaks are not consistent with those of
the Shapiro peaks. The first Shapiro peaks can also be
seen in fig. 1(b). The frequency dependence of the differ-
ential conductance is shown in fig. 2(a). The peak posi-
tions and heights of the new peaks are symmetric, while
the dI/dV curves are asymmetric. The asymmetry sug-
gests that there is a macroscopic polarization associated
with metastable states of the phase field in o-TaS3 crys-
tals [13], however, metastability is not directly related to
the new peak structures.

From figs. 1(a) and 2(a), the RF amplitude and fre-
quency dependences of the CDW current at the new peaks
and at the first Shapiro peaks are obtained. Figure 2(b)
shows the CDW current at the peaks as a function of the
ac amplitude for fRF = 1 MHz. The CDW current interval
of the first Shapiro peaks is constant ((I(+)

CDW −I
(−)
CDW)/2 =

0.065 mA at fRF = 1 MHz). On the other hand, the
CDW current at the new peaks increases as the RF ampli-
tude increases. As shown in fig. 2(c) the CDW current at
the first Shapiro peaks is proportional to fRF, while the
CDW current at the new peaks decreases. Contrary to
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Fig. 3: (Colour on-line) Left panel: temperature dependence of
dI/dV vs. Idc curves of o-TaS3 crystal for VRF = 200 mV and
fRF = 1MHz. The inset shows the temperature dependence of
the differential conductance dI/dV for Vdc = 0V, and VRF =
0V. The dashed line indicates the Arrhenius curve mentioned
in the text. Right panel: temperature dependence of dI/dV
vs. Idc curves of sample 2 for VRF = 600 mV and fRF = 1MHz.

the Shapiro peaks following the conventional Shapiro in-
terference mechanism, the new peaks have clearly different
RF amplitude and frequency dependences. These results
suggest that the CDW dynamics has an unconventional
internal degree of freedom.

We also find that the new peaks disappear at low tem-
perature. Figure 3 (left panel) shows the temperature
dependence of the differential conductivity when an ac
voltage of VRF = 200 mV and fRF = 1 MHz is applied.
When the temperature decreases, the current at the new
peaks decreases, and the height of the zero-bias peak in-
creases. Below 120 K, the new peaks are below the shoul-
der of the zero-bias peak. At the temperature range at
which the new peaks are observed, the commensurate
and incommensurate CDWs coexist simultaneously [7].
The synchrotron X-ray diffraction measurement could re-
veal high resolution of satellite diffraction structure of the
CDW in o-TaS3. There were the peaks of commensurate
and incommensurate CDWs while the diffraction peaks of
the mother lattice did not split. The results show that
the CDW in o-TaS3 has an internal degree of freedom
in the phase structures, which would be a key to un-
derstanding the origin of the new peak structures in the
dI/dV curve.

We note that the temperature dependence of the low-
field conductivity (dI/dV for Idc = 0, and VRF = 0)
in the inset of fig. 3(a) is consistent with previous re-
sults [10]. The transition temperature is 218 K and the
conductivity above 110 K follows the Arrhenius curve
σ(T ) = σ0 exp(−2Δ/T ) with a semiconducting energy gap
of 2Δ = 828 K.

The new peak structures have been observed in another
o-TaS3 whisker (sample 2). Figure 3 (right panel) shows
the temperature dependence of the differential conduc-
tance under a RF electric field. In this sample the new
peaks appear but no clear zero-bias peak are observed.
The new peak structures are observed at 80 K to 100 K,

and the peaks disappear at higher and lower temperatures.
This measurement was performed with both current sweep
directions. The new peak structures do not have hysteresis
and dependence associated with current sweep direction.
We note that all samples did not show the new peak struc-
tures. We measured 10 o-TaS3 whiskers, and two samples
showed the unconventional ac-dc interference peaks. The
sample dependence has not been understood yet.

Discussions. – The peak structures nearby the zero-
bias peak were clearly observed in sample 1, and 2. The
appearance of the peaks is a physical phenomenon, not
a data error. The differential conductance without RF
bias has no special features. This means that there is no
large crack in the crystals to make two or more thresh-
old voltages. In the electrical measurement, there may
be a transversal current flow. However, in our samples,
the probe to probe lengths are more than 10 times larger
than the crystal width and thickness. The conductivity
anisotropy of the TaS3 is of the order of 100 at room tem-
perature and increases at low temperature. Thus only
0.1% of the conductivity is affected by the transverse cur-
rent. Thus, we can neglect the effect of transverse current.

The origin of the new peak structures is discussed. The
inhomogeneous CDW current explains the step structures
in dI/dV curves [11,12]. If the CDW current flows in-
homogeneously due to impurities or inhomogeneous cur-
rent injection, the step structures might appear in dI/dV
curves. When there are parallel CDW chains with differ-
ent CDW currents flow, total current vs. voltage curves
must have many threshold voltages. In dI/dV curves,
many step structures would be observed. Moreover, the
frequency and amplitude dependences of the new peaks
are completely different from those of the Shapiro inter-
ference. Thus, the new peaks cannot be produced the
Shapiro interference of the inhomogeneous current.

Another possible internal degree of freedom causing the
new peak structures is the CDW phase solitons. Solitons
have been expected to exist in the commensurate CDW
of an o-TaS3 system from electrical transport and optical
excitation experiments [2,3]. The existence of a fractional
2π/M phase soliton (with a fractional charge 2e/M) is
predicted in commensurate CDW systems with commen-
surability M , where M = 4 for o-TaS3 systems. Therefore,
we consider the soliton dynamics and its contribution into
IV characteristics with a RF field. Solitons must play an
important role for the CDW dynamics, since a soliton is a
topologically stable and carries a 2e/M electrical charge.
Since the soliton has electrical charge, the solitons must be
pinned by impurities. Thus, the soliton pinning and depin-
ning must be taken into account. When a RF electric field
is applied, the solitons must be depinned and contribute
dc conduction at a moment, while the bulk CDW does not
contribute to dc conduction. The degree of freedom of the
solitons would modify CDW dynamics. The soliton flow
would be associated with the origin of the unconventional
ac-dc interference peaks.
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Soliton liquid model. – Here we discuss the structure
of o-TaS3 CDWs based on the sine-Gordon–type equation,
comparing it with the structural information obtained by
the X-ray diffraction experiment [7]. The high resolved
X-ray diffraction experiment revealed that there are two
components corresponding to the commensurate (Qc =
0.25c∗) and incommensurate (Qic = 0.255c∗) CDWs, and
their intensities have a temperature dependence [14].

The electron density of the CDW on an o-TaS3 chain is
expressed as ρ(z, t) = |ρ0| sin(Qcz + φ(z, t)), where |ρ0| is
the amplitude of the CDW order parameter. The dynam-
ical equation of the phase field φ(z, t) of a commensurate
CDW with commensurability M is written as

∂2φ

∂t2
− v2

ph
∂2φ

∂z2 + gM sin(Mφ) − Fimp

= −1
τ

∂φ

∂t
− πene

m∗ E(t), (1)

where m∗ is the CDW effective mass, ne = Qc/π is the
base one-dimensional electron density, gM is the commen-
surability coupling constant, τ is the damping time, E(t)
is the external electric field, and vph =

√
m/m∗vF is

the CDW phason velocity. Fimp(z, t) = gP
∑

i sin(Qcz +
φ(z, t))δ(z−zi) is the pinning potential force of impurities
at z = zi.

The phase solitons can exist without any excitation if
there is a mismatch between 2kF and 1/4c∗. With o-TaS3
systems, the true one-dimensional electron density must
be Qic/2π, and the excess charges should make 2π/M
solitons. If there are many phase solitons in the sys-
tem, the phase φ(z) is approximately written as φ(z, t) =∑

i φi(z, t), where the i-th 2π phase soliton is expressed as

φi(z, t) =
4
M

tan−1
{

exp
[
γ

d
(z − zi

0 − vSt)
]}

. (2)

Here vS is the soliton velocity, γ = [1 − (vS/vph)2]−1/2

is the Lorentz factor, and d = vph/(M
√

gM) is the soli-
ton width. Due to the experimental situation, the soliton
velocity vS = λcfNBN � vph, where λc = 2π/Qc is the
commensurate CDW wavelengths.

The X-ray diffraction [7] gave a hint about M [15]. In
the experiment, the commensurate and incommensurate
satellite diffraction spots were observed simultaneously at
from 220 K to 50 K, while the Bragg diffraction spots of
the mother lattice did not split. We found that 2π phase
solitons can only reproduce the commensurate and incom-
mensurate satellite diffraction spots, as follows. By calcu-
lating the Fourier transformation of the electron density
ρ(z, t), we can expect the CDW satellite diffraction spec-
trum. The Fourier magnitudes have a spot at Qic, and
high-order spots at Qic + nMΔQ, where n is ±1, ±2, · · · ,
and ΔQ = Qic −Qc, due to the Bessel function expansion.
To reproduce the commensurate peak at Qc [7], M should
be 1. The existence of the 2π solitons is reasonable since a
2π soliton can exist when a smallest phase dislocation loop
encircles a one-dimensional chain, while the chain-chain
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Fig. 4: (Colour on-line) (a) dφ/dz of a one-dimensional CDW
for 2π phase soliton lattice (above the dashed line) and soli-
ton liquid (below the dashed line) with several soliton width.
d increases from top to bottom. A 2π soliton exists every 50
commensurate CDW wavelengths (λc = 2π/Qc). (b) Magni-
tude of the Fourier transform of electron density ρ(z) for soliton
lattice and soliton liquid states. (c) dφ/dt as a function of the
dc electric field calculated from eq. (1) without impurity po-
tential. Eth is the threshold electric field. (d) Soliton width d
as a function of the dc electric field.

Coulomb interaction energy is minimized [5,6]. If a frac-
tional soliton exists in a chain, the chain-chain Coulomb
interaction energy between the neighboring chains must
be increased. In other words, the fractional solitons must
form a domain wall across the cross-section of the crystal
to match the CDW phase with those of the neighboring
chains.

If the soliton-soliton interaction is strong, the soliton-
soliton distance will be constant. Then the 2π phase soli-
tons form a one-dimensional lattice as the curve above the
dashed line in fig. 4(a) [16–18]. The Fourier magnitude of
the electron density for the soliton lattice state shows not
only the commensurate and incommensurate spots, but
also high-order spots as the curve above the dashed line
in fig. 4(b), contrary to the experimental results. The fact
that only two spots at Qic and Qc = Qic − ΔQ were ob-
served means that the soliton lattice has melted.

When the interaction becomes weaker than the impu-
rity potential or thermal fluctuation, the soliton lattice
will melt and the solitons will move individually [19,20].
This behavior is analogous to that in superconducting vor-
tices [21]. The soliton positions are random in the liquid
state. The position of the i-th soliton zi

0 is assumed to be
distributed randomly in the λcQc

MΔQ − d range. The curves
below the dashed line in fig. 4(a) show dφ(z)/dz of the
soliton liquid state for several soliton widths.

The Fourier magnitudes for the soliton liquid state are
shown below the dashed line in fig. 4(b). For the soliton
liquid state of 2π phase solitons, both the commensurate
and incommensurate components remain in the Fourier
spectrum, and the randomness of the soliton positions
causes other high-order components to become diffused.

Moreover, increasing of the soliton width d reproduces
the crossover from the commensurate to the incommen-
surate CDWs. When the soliton width is small, then
the commensurate peak is only observed. With the de-
crease of the soliton width, the CDW is approaching to
be incommensurate, then the incommensurate diffraction
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peak is enhanced. The results of the X-ray experiment [7]
indicate that the soliton width d increases when temper-
ature increases. The temperature dependence of d could
be interpreted as the development of the CDW order pa-
rameter, since the commensurate coupling constant gM is
an increasing function of the CDW amplitude.

The existence of solitons qualitatively explains the en-
hancement of the incommensurate CDW at the sliding
state [7]. The experiment found that the intensity of the
incommensurate CDW diffraction spots in the sliding state
is stronger than that in the pinning state. The numerical
calculation of eq. (1) in overdamped situation provides a
consistent result. Figure 1(d) shows dφ/dx as a function
of the applied dc electric field. The peaks of dφ/dx cor-
respond to the 2π-solitons. The soliton at zero external
electric field have a maximum of the peak height. Thus,
the soliton width is smallest. The soliton width for 2π-
solitons is expressed by d = vph/

√
gM, while soliton-soliton

distance is larger than the soliton width. When the ex-
ternal electric field exceeds the threshold field, the bulk
CDW slides, and the soliton height becomes drastically
small, namely, the soliton width becomes larger, as shown
in fig. 1(d). The CDW moves when the external electric
field exceeds the threshold field, then the many parts of
the CDW do not stay the minimum of the commensura-
bility energy potential. Then the constant gM effectively
decreases for the moving CDW, since an incommensurate
CDW reduces the elastic energy instead of the commen-
surability energy in the sliding state. Hence, the soliton
width is increased at the CDW sliding state, and the CDW
phase field becomes rather incommensurate, as shown in
fig. 4(a) and (b). The one-dimensional soliton liquid model
naturally explains the enhancement of the incommensu-
rate satellite spots at the sliding state.

We investigate CDW dynamics with the 2π soliton liq-
uid and impurities in the presence of RF bias using numer-
ical calculation of eq. (1). The dc (time-averaged) CDW
current 〈dφ/dt〉 is calculated as a function of dc electric
field. All calculations are performed with overdamped sit-
uation, and the following parameters: vph = 3, gM = 0.5,
gP = 5, and τ = 0.01. If there is no soliton, and there is
no impurity potential, the calculation reproduces the well-
known nonlinear conduction of the CDW system, as shown
in fig. 5(a). When a RF field is applied, the Shapiro inter-
ference occurs at 〈dφ/dt〉 = nfRF, where n is integer. The
steps in the IV curve correspond to the integer Shapiro
steps.

Secondly, if impurities are assumed to be induced ran-
domly in the one-dimensional chain, the phase field φ(z)
is modified since the phase is locked locally by the impu-
rities. Then the threshold electric field is increased rather
than that without impurities, as shown in fig. 5(b). In
the presence of the RF field, the fractional Shapiro steps
appear. This must be caused by the interaction between
the impurities and the CDW phase field.

Thirdly, if 2π phase solitons are introduced in the sys-
tem, the current flows when a low electric field is applied,
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purity into consideration. (a) No soliton and no impurity in
the system. (b) No soliton and five impurities introduced at
random in the system of 100 crystal lattices. (c) A soliton is
introduced. (d) Both a soliton and five impurities are intro-
duced. The black curves indicate dc current-voltage character-
istics, where Idc is proportional to the time-average of ∂φ/∂t.
The red curves indicate the results when an alternative electric
field of amplitude ERF = 2 and frequency fRF = 0.005/2π is
applied. (e) Magnification of current-voltage characteristics in
(d) around Edc = 0 for ERF = 2. Both a soliton and five impu-
rities are in the system. (f) Differential conductance obtained
by differentiation of curve for ERF = 2 in (e).

as shown in fig. 5(c). Here the impurities were neglected.
The solitons move and carry charges, while the bulk CDW
is pinned by the commensurability energy potential. So,
the system shows an Ohmic conduction at zero voltage.

Finally, fig. 5(d) shows the results when both the 2π
phase solitons and the impurities are taken into account
for the calculation. For ERF = 0, both the bulk CDW and
the solitons are pinned by impurities when Edc < Eth, and
depinned when Edc > Eth. The soliton depinning energy
is much larger than the CDW depinning energy from the
commensurability potential and impurity potential, then
only one threshold electric field should be observed by the
experiment. We note that this is the same with our experi-
mental results. If we assumed two or more separated CDW
domains, two or more threshold fields must be expected.

When a RF electric field is applied, then the IV curve
shows step-like structures around zero bias. Figure 5(e)
shows magnification of the step-like structure. When
Edc < ES1, solitons and CDW are moved by the RF
field, however, the contribution to the dc conductivity is
zero, as well as at the pinning state. For ERF � Eth,
the solitons depinned when Edc > ES1 with the help of
the RF field, and contribute to dc conduction. The soli-
ton conduction is much smaller than the bulk CDW con-
duction since the soliton charge is localized and sparse.
Therefore, a step-like structure appears in the current-
voltage characteristics. When Edc > ES2, the bulk CDW
is depinned, and the sliding CDW causes the integer and
fractional Shapiro steps. The differential conductivity of
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the calculation results indicates a peak structure beside
the zero-bias peak, as shown in fig. 5(f), which is quan-
titatively consistent with our experimental results. This
model provides a possible explanation for both experimen-
tal results of the ac-dc interference measurement and the
X-ray diffraction measurement. While the strength of im-
purity potential has arbitrariness, this calculation suggests
that the unconventional ac-dc interference effect is associ-
ated with an interaction between solitons and impurities.
The sample dependence of strength of impurity potential
might be the reason why a few samples show the new ac-dc
interference peaks.

Summary. – In summary, we found new ac-dc interfer-
ence peaks in the differential conductance of o-TaS3 crys-
tals when we applied a radio-frequency (RF) ac electric
field. We proposed the 2π soliton liquid model to explain
our results and the coexistence of commensurate and in-
commensurate CDWs. The existence of the soliton liquid
may provide a consistent explanation for the low-energy
excitations [2,3], and nonlocal voltages [4], and will play
an important role for understanding the quantum inter-
ference effect in o-TaS3 systems [5,6].

∗ ∗ ∗

We thank K. Yamaya, K. Ichimura, J. Ishioka,

T. Kuroishi, T. Satoh, and K. Nakatsugawa for
fruitful discussions. This work is supported by the
JSPS KAKENHI Grant-in-Aid for Young Scientists (B)
12837528 and Iketani Science and Technology Foundation
0241040-A.

REFERENCES

[1] Monceau P., Adv. Phys., 61 (2012) 325.
[2] Bikiakovic K., Lasjaunias J. C. and Monceau P.,

Synth. Met., 29 (1989) F289.

[3] Zaitsev-Zotov S. V. and Minakova V. E., Phys. Rev.
Lett., 97 (2006) 266404.

[4] Inagaki K., Tsubota M. and Tanda S., Phys. Rev. B,
81 (2010) 113101.

[5] Tsubota M., Inagaki K. and Tanda S., Physica B, 404
(2009) 416.

[6] Tsubota M., Inagaki K., Matsuura T. and Tanda S.,
EPL, 97 (2012) 57011.

[7] Inagaki K., Tsubota M., Higashiyama K., Ichimura

K., Tanda S., Yamamoto K., Hanasaki N., Ikeda N.,

Nogami Y., Ito T. and Toyokawa H., J. Phys. Soc.
Jpn., 77 (2008) 093708.

[8] Sambongi T., Tsutsumi K., Shiozaki Y., Yamamoto

M., Yamaya K. and Abe Y., Solid State Commun., 22
(1977) 729.

[9] Tsutsumi K., Sambongi T., Kagoshima S. and
Ishiguro T., J. Phys. Soc. Jpn., 44 (1978) 1735.

[10] Thompson A. H., Zettl A. and Grüner G., Phys. Rev.
Lett., 47 (1981) 64.

[11] Latyshev Yu. I., Minakova V. E. and Rzhanov Yu.

A., JETP Lett., 46 (1987) 10.
[12] Maher M. P., Adelman T. L., McCarten J.,

DiCarlo D. A. and Thorne R. E., Phys. Rev. B, 43
(1991) 9968.

[13] Tessema G. X., Alavi B. and Mihaly L., Phys. Rev.
B, 31 (1985) 6878.

[14] Roucau C., J. Phys. (Paris), Colloq., 44 (1983) C3-1725.
[15] Jacques V. L. R., Le Bolloc’h D., Ravy S., Dumas

J., Colin C. V. and Mazzoli C., Phys. Rev. B, 85
(2012) 035113.

[16] Preobrazhensky V. B. and Taldenkov A. N., Synth.
Met., 29 (1989) F313.

[17] McMillan W. L., Phys. Rev. B, 14 (1976) 1496.
[18] Okwamoto Y., Takayama H. and Shiba H., J. Phys.

Soc. Jpn., 46 (1979) 1420.
[19] Miller J. H. jr., Wijesinghe A. I., Tang Z. and Guloy

A. M., Phys. Rev. B, 87 (2013) 115127.
[20] Miller J. H. jr., Wijesinghe A. I., Tang Z. and Guloy

A. M., Phys. Rev. Lett., 108 (2012) 036404.
[21] Koshelev A. E. and Vinokur V. M., Phys. Rev. Lett.,

73 (1994) 3580.

27005-p6


