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Topology-change surgery for crystals
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We performed the topology-change surgery for ring-shaped crystals of tantalum triselenide (TaSe3) to
investigate the interplay between the closed-ring topology and elasticity/plasticity of the crystals. We cut the
TaSe3 rings using a focused ion beam and observed that the curvatures of the open rings increased from their
initial curvatures. We found that a change in the radius is proportional to inverse square of the thickness of the
crystals, which corresponds to an inhomogeneous distribution of edge dislocations. From the distribution, we
suggest the existence of cylindrical domain walls in the ring-shaped crystals as a result of the crystal topology.
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The surgery method in Mathematics, which changes the
topology of a space by cut and glue, is a powerful tool to
extract topological properties, as Perelman solved the Poincaré
conjecture.1,2 Even in nature, the topology-change surgery
is an important approach since the interplay between global
topology and local symmetry would play a fundamental role in
cosmology, condensed matter physics, and biology.3–5 By the
discovery of rings, Möbius rings and Hopf links of crystals of
transition metal-trichalcogenide compound systems (NbSe3,
NbS3, TaSe3, and TaS3),6–9 we obtained experimental systems
for the interplay between the closed-ring topology and local
order parameters. Using the topological crystals, effects of
the closed-ring topology on charge density waves10–17 and
superconductivity18 have been investigated.

As well as the ordered phases in electron systems, the crys-
tal orders of the topological crystals have rich problems of the
interplay between the global topology. The crystal structures of
the topological crystals must be different from normal crystals
due to a topological charge, namely, a global disclination.19 As
shown in Fig. 1(a) (left), the global disclination is obtained as
the total rotation angle of a crystal axis (b axis) of a ring-shaped
crystal along a closed curve on the crystal, where it is 2π

for the ring-shaped crystals, and this value is topologically
robust against continuous deformations. Due to the global
disclination of power 2π , the crystal lattice cannot be mapped
onto that of perfect crystals globally. Moreover, the topological
crystals must be frustrated geometrically by the deformation
energy from bending or twist, and the deformation energy
would induce topological defects into a topological crystal
for relaxation. Hayashi et al. pointed out theoretically that
the geometrical frustrations (curvature) of the crystals induce
topological defects (edge dislocations), as analogous with
vortices in type II superconductors.20 The x-ray diffraction
measurements for ring-shaped crystals of NbSe3 confirmed
that the averaged bending strain in a ring-shaped crystal is
relaxed by defects.21 However, the distributions of strain and
defects have never investigated experimentally since the x-ray
diffraction measurement has less spatial resolution for the
small crystals due to the spot size of x ray. In principle, the
conventional methods with the plane waves of x-ray/electron-
beam diffraction are inappropriate for investigation of the

curved crystals since the directions of the crystal lattices are
depend on the position.

In this paper, we performed the topology-change surgery
experiment with the ring-shaped crystals of tantalum trise-
lenide (TaSe3) to reveal the interplay between the global
topology and the local crystal properties (elasticity/plasticity).
The crystal structure of TaSe3 is orthorhombic with lat-
tice constants a = 10.402 Å, b = 3.495 Å, c = 9.829 Å,
and β = 106.26◦,22 and TaSe3 crystals are known to be
superconductors.23 The b axis is parallel to the circumference
of the ring-shaped crystals similar to the ring-shaped crystals
of NbSe3.6,7,24 When a ring-shaped crystal is cut as shown in
Fig. 1(a) (right), the global disclination becomes zero. Thus,
the topology-change surgery from closed-ring to open-ring
crystals means eliminating the global disclination of power 2π

from the crystals similar to that the vortex in a superconductor
ring is eliminated when the ring was cut. As the results, we
discovered that the changes of the curvatures are proportional
to inverse square of the thickness, which corresponds to the
nonlinearity of the defect creation. The analysis based on the
elastic theory suggests that the line defects (edge dislocations)
form a “topological domain wall.”

To cut the ring-shaped crystals, we used the irradiation
of a focused gallium ion beam with a spot size of less than
1 μm (acceleration voltage: 30 kV).14,25 Figures 1(b) and
1(c) show the scanning ion beam microscopy (SIM) images
of the topology-change surgery experiment for typical thin
and thick ring-shaped crystals, respectively, where each left
panel shows the original shapes of the ring-shaped crystals
and each right panel shows the final shapes after the topology-
change surgery. We observed that the thin ring-shaped crystals
opened elastically after the surgery; however, no open-ring
crystals became to be straight (zero curvature), while the
global disclination became zero. These results indicate that
the bending stress is partially relaxed by the defects.

To evaluate the elasticity of the crystals, we introduced
the dimensionless parameter (Rf − R0)/R0, where we defined
the initial and the final radiuses of curvatures (R0 and Rf) as
average values for the outer and inner radiuses, and thickness
T as differential of the outer and inner radiuses. Note that
the shapes of the open-ring crystals could be fitted by circular
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FIG. 1. (Color online) (a) Schematics of topology-change surgery for a ring-shaped crystal. The global disclination of power ω = ∮
C

dθb

is changed by surgery from 2π (for the closed-ring crystal in the left panel) to zero (for the open-ring crystal in the right), where θb is relative
angle of b axis of TaSe3 crystals (indicated by the arrows). (b) and (c) Scanning ion beam microscopy (SIM) images of typical thin and thick
ring-shaped crystals of TaSe3 before topology-change surgery (left), and after surgery (right). The thickness T , original radius of ring-shaped
crystals R0, and final radius of open-ring crystals after topology change Rf are 1.583, 42.45, and 128.4 μm for the thin ring-shaped crystal
(b) and 6.00, 12.05, and 12.35 μm for the thick ring-shaped crystal (c), respectively. (d) Ratio of curvatures (Rf − R0)/R0 as a function of
normalized thickness T/R0. The log-log plot is shown in the inset. The solid line indicates the fitting curve given by A(T/R0)α , where we use
α = −2 and A = 0.0015.

arcs, elliptic arcs, or cycloid/trochoid curves; however, we
consider all of them to be circular arcs with a mean radius of
curvature Rf as the zeroth approximation in this paper. If a
ring-shaped crystal were made from a perfect crystal (without
defects), Rf should be infinity, since all bending stress could
be elastically relaxed by the topology-change surgery from
closed ring to open ring. On the other hand, if the bending
stress in the ring-shaped crystal were completely plastically
relaxed by defects, the curvature would not be changed by the
topology change; in this case, (Rf − R0)/R0 = 0. Hence, the
value of (Rf − R0)/R0 represents the number of the defects
inside the ring-shaped crystal.

Figure 1(d) shows the experimental data of (Rf − R0)/R0

as a function of the normalized thickness T/R0. The colors of
the symbols correspond to the ranges of the initial radius R0,
and we found that (Rf − R0)/R0 did not depend on R0. The
ring-shaped crystals with small T/R0 values (T/R0 < 0.05)
were elastically opened by the topology-change surgery, and
for some ring-shaped crystals, the final radiuses of curvatures
Rf were more than double R0, and all the crystals were in
the (Rf − R0)/R0 < 6 range. We note that the distribution
of (Rf − R0)/R0 did not depend on the width of the crystal.
Thus, we will not discuss the width. From the log-log plot of
(Rf − R0)/R0 versus T/R0 shown in the inset of Fig. 1(d), we
found the following relation:

Rf = R0

(
1 + A

( T

R0

)α
)

. (1)

A fitting line with α = −2, and A = 0.0015 is plotted in
Fig. 1(d) and in its inset. The second term of Eq. (1) indicates
the plasticity of the ring-shaped crystals. As discussed later, A
and α involve information about the yield strain and strain
distribution, respectively, reflecting the anisotropic crystal
structure of TaSe3.

We investigated Eq. (1) using a model of ring-shaped
crystals including defects based on the elastic theory.26 Here,
we here assumed that Rf/R0 depends solely on strain for the
b axis (parallel to the circumference), while the stress and
strain in the orthorhombic system of TaSe3 crystals should be
strictly expressed by tensors. This assumption is applicable
to the ring-shaped crystals since recent results from the x-ray
diffraction measurement for the ring-shaped crystals of NbSe3

provided corroboration that the strain along the b axis is
much larger than those for other axes.21 Hence, in this paper,
we considered only the strain along the b axis. If there are
edge dislocations in the bent material, the free length of the
circumference (parallel to b) is written as 2πR0(1 − εd(x)),
where εd(x) represents the change in the lattice number along
the circumference caused by the edge dislocations. The strain
with an arbitrary radius of curvature R is expressed as

εr(x,R) ∼ x

R
+ εd(x), (2)

where we assumed εd(x) � 1. Note that, if the density of
dislocations is a constant value [εd(x) = −γ x/R0 (1 � γ �
0)], εr(x,R) is constant, and then α in Eq. (1) is 0. The bending
energy density is written as f (x,R) = Y

2 εr(x,R)2, where the
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FIG. 2. (Color online) (a) Schematics of strain εr(x,R) and bending energy f (x,R) ∝ εr(x,R)2 for a bent perfect crystal. The bending
strain ε with a radius of curvature R is expressed as ε = x

R
, where x is the distance from a center neutral axis along the radial direction.

The bending stress is assumed to be proportional to strain ε, such as σ = Yε, where Y is Young’s modulus. The free energy density of the
bending strain is expressed as f (x,R) = ∫

σ (ε)dε, which is shown as a red curve. (b) Model of a bent crystal with edge dislocations. The
strain εr is relaxed by the edge dislocations. Because of the large anisotropy of the crystal, the core sizes of the edge dislocations are strongly
elongated to b axis direction, where 
y is about 10 times larger than 
x . (c) Strain εr(x,R0) [Eq. (5) with A = 0.0015], bending energy
f (x,R0), and density of edge dislocations nd(x). The bottom panel shows nd(x) calculated for R0 = 30 μm. nd(x) reaches its maximum value

at |x|/R0 = τ/2 ≡
√

(
√

5
2 − 5

4 )A ∼ 0.575
√

A, and then decreases to a constant value.

stress is assumed as σr (x,R) = Yεr (x,R). The total elastic
energy of the open-ring crystal is

F (R) =
∫ W/2

−W/2

∫ 2πR0(1−εd(x))

0

∫ T/2

−T/2
f (x,R)dxdydz

= πYR0W

∫ T/2

−T/2
εr(x,R)2(1 − εd(x))dx. (3)

Thus, we obtained the condition of the final radius of curvature
of the open-ring crystals by dF (R)

dR
|R=Rf = 0, as follows:

1

Rf
= − 12

T 3

∫ T/2

−T/2
xεd(x)dx. (4)

Here, we note that Rf does not depend on Y . εd(x) in the
ring-shaped crystals is obtained from Eq. (4) by using Eq. (1)
with α = −2:

εd(x) = −
5

12A
(

R0
x

)
+ x

R0(
A

(
R0
2x

)2
+ 1

)2 , (5)

where we assumed that εd(x) is an odd function. The strain
distribution εr(x,R) for R = R0 is given by Eqs. (2) and (5).
As shown in Fig. 2(c), εr(x,R0) deviates from x/R0 when
|x|/R0 increases, and exhibits its maximum value at |x|/R0 =
0.341

√
A. εmax

r (= 0.183
√

A) with A = 0.0015 is estimated at
0.71%, the value of which is of the same order as the x-ray
diffraction measurement results for the ring-shaped crystals

of NbSe3.21 For |x|/R0 � 0.341
√

A, the strain εr(x) slowly
approaches zero as |x|/R0 is increased.

We found that the distribution of the edge dislocations
nd(x) has two peaks at x/R0 = ±τ/2 ∼ ±0.575

√
A, as shown

in Fig. 2(c), which suggests that the dislocations gather
on ring with radius R = R0 ± τ/2. Here, we calculated
nd(x) = − 2πR0a

∗
b

d
dx

εd(x), where a∗ = a sin β and b are the
lattice constants along the radial and circumference directions,
respectively. The peaks indicate that elasticity is dominant
when τ > T/R0 and plasticity is dominant when τ < T/R0.
If edge dislocations gather on a circle in the ring-shaped
crystals, the cores of the dislocations might overlap each
other and form a cylindrical domain wall as anticipated in
our previous paper,21 similar to the cylindrical vortices in the
ring-shaped crystals of TaSe3.18 The cylindrical domain walls
can relax the bending stress homogeneously conserving the
global disclination. If the strain ε = τ/2 is relaxed to zero by
a cylindrical domain wall, one edge dislocation is induced for
approximately every 45 lattices along the b axis (Nd = 2πR0

b
τ
2 ).

The value corresponds fairly well with the order of core
size of the edge dislocations along the b axis (
y = a∗/γ ,
where γ ∼ 10−1 is the parameter representing anisotropy of
the crystal structure20). Thus, the domain size τ is determined
by the circumference length of the ring-shaped crystals. This
must be the interplay between the global topology and the local
crystal orders.

Furthermore, the cylindrical domain walls would be intro-
duced periodically in thick ring-shaped crystals of T/R0 > 2τ .
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FIG. 3. (Color online) (a) SIM image of a thick ring-shaped crystal of TaSe3. On the surface, the concentric lines with a period of
�T ∼ 0.8 μm are observed (indicated by the red curves). R0 = 11 μm and �T/R0 ∼ 0.072, which is in the order of τ . On the lines, the
selenium droplets are also observed. (b) Frequency distribution of randomly selected ring-shaped crystals as a function of T/R0. The blue
broken curve is a guide for the eyes showing the periodic peaks of the frequency distribution. The black open circles indicate the sort number
of each ring-shaped crystal numbered in order starting with the smallest T/R0 value, and show the periodic step structures. (c) Model of
cylindrical domain walls in the ring-shaped crystal and strain distribution inside crystal.

As shown Fig. 3(a), we found the concentric rings on the
surface of some thick ring-shaped crystals (indicated by red
curves), and on which the selenium droplets congregated.
The period (�T/R0) of the rings is in the order of τ . We
also found the frequency (number) distribution of normalized
thickness, T/R0, of randomly selected ring-shaped crystals
oscillating in the period of τ/2, as shown in the histogram
of Fig. 3(b). The number of the rings of a value of T/R0

would increase if the growing speed of thickness becomes
slow at the thickness. Hence, the oscillation implies that the
cylindrical domain walls induce periodically as a function
of T/R0. When T/R0 becomes large, the growing speed of
thickness T for the ring-shaped crystals decreases due to an
increase in the bending stress energy [Fig. 3(c), left panel], and
if a cylindrical domain wall is introduced, as shown in Fig. 3(c)
for T/R0 > τ , the stress is relaxed, and then the growing
speed recovers. These two results suggest that introducing the
cylindrical domain walls is the main mechanism of relaxation
for the bending strain in thick ring-shaped crystals. We note
that for T/R0 > τ , (Rf − R0)/R0 would oscillate with a period
of τ due to the introduction of the domain walls; however,
the amplitude of the oscillation would be smaller than the
experimental noise in Fig. 1(d). The defect density between
the two domain walls should be small, the crystal structures
would be clean as well as single crystals. These features of

the crystals are consistent with the results of the previous
experiments in which we have observed clear charge density
waves and superconductivity in the ring-shaped crystals as
well as single crystals.10–15,18

In summary, we demonstrated that the topology-change
surgery gives us valuable information in crystals. By cutting off
the ring-shaped crystals of TaSe3, we found a phenomenolog-
ical relation between the radius of curvature after the topology
change and thickness. From the relation, we extracted the
crystal domain size (τ ) of the ring-shaped crystals. These
results strongly suggest that the cylindrical domain walls
are induced in the ring-shaped crystals, due to the interplay
between the closed-ring topology and the crystal structures.
The topology-change surgery is a significant methodology to
extract topological effects, and would be applicable to other
topological materials, such as multiwall nanotubes27,28 and
biomolecules.5
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