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Here we report the structural study of NbSe3 topological crystals via synchrotron x-ray measurements on
individual microcrystals. Topological crystals are characterized by the shape of a ring or a twisted loop, thereby
representing a translational and orientational order confined in topologically nontrivial, curved geometries. The
crystal lattice of topological crystals is under considerable amount of strain. The volume-averaged strain
asymptotically increases with thickness and curvature of a crystal. We present a structural model in which a
ring crystal is composed of well-ordered domains in the shape of concentric cylinders. The internal structure
reflects periodic accumulation and release of strain during the growth.
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I. INTRODUCTION

Recently, we have demonstrated that transition-metal
trichalcogenide �MX3, M =Nb or Ta and X=S or Se�, a group
of fibrous and pliable materials, can grow as a microcrystal
in the shape of a ring, Möbius strip,1 and Hopf link.2 Termed
“topological crystals,” they are the solid-state manifestation
of topologically nontrivial geometries. Owing to their one-
dimensional nature, MX3 offer higher structural freedom than
previously known two-dimensional materials, e.g.,
fullerenes3,4 �sphere� and nanotubes5 �cylinder�.

Topological crystals intrigued many with unexplored
physics in multiconnected geometries.6–9 A particularly inter-
esting feature of MX3 topological crystals is their charge
density wave �CDW�,10,11 a macroscopic quantum state.
CDW emerges as a periodic modulation of electron-density
coupled to ionic displacement. Mechanical deformations can
affect its phase order, e.g., in a manner analogous to a super-
conductor under a magnetic field.12 In fact, a series of ex-
periments and simulations have revealed that CDW confined
in the ring geometry has weakened intermolecular chain or-
dering. Namely, an enhancement of Ginzburg-Landau
fluctuations,13–15 a lowering of CDW pinning potential,16 and
higher damping time of phason excitations17 in NbSe3 topo-
logical crystals are reported. A unified understanding of these
phenomena is still lacking.

However, little is known about how a topological crystal
retains its crystal order against geometrical frustration. Sup-
pose a crystalline order native to the Euclidean R3 is con-
fined in a cylindrical space R2�S1. As the flat space cannot
be mapped to the curved space isometrically and confor-
mally at the same time, the translational and rotational order
would acquire increasing strain depending on the position. In
such a frustrated system, the original order may partially
break into a new, unfrustrated structure.18,19 Alternatively, it
may develop a defect substructure characterized by periodic
accumulation and release of strain as in Frank-Kasper
metals20,21 and liquid crystal blue phases.22,23 These orders

are known to perfectly fit curved space but when confined in
a flat space, they develop characteristic disclination net-
works. NbSe3 topological crystal is rare self-organized
curved crystal that originally fits a flat space. And hence its
structure and defect substructure is an interesting problem. In
this paper, we report the structural study of individual, pris-
tine topological crystals.

II. EXPERIMENT

NbSe3 belongs to space group P21 /m with lattice param-
eters, a=10.009, b=3.4805, c=15.629 Å, and �=109.47°.24

The crystal structure is composed of infinitely long, one-
dimensional molecular chains aligned in the crystallographic
b, which coincides with the circumference of topological
crystals. The chains are bonded to each other in an aniso-
tropic manner, forming stronger ionic/covalent bonding in c
and weaker van der Waals bonding in a.25 Consequently,
NbSe3 usually forms a thin whisker crystal.

Our samples fall into three categories: whisker, ring �more
specifically, cylinder�, and “figure-eight” strip, which is a
loop with a twist of 2� on circling around the circumference.
Figures 1�a� and 1�b� shows typical samples. See Ref. 26 for
sample growth conditions. Figure 1�c� illustrates the coordi-
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FIG. 1. Typical topological crystal samples: �a� ring and �b�
figure-eight strip. Scale bars: 100 �m. �c� Crystallographic axes a�,
b, and c, and apparent size parameters radius R, thickness T, and
width W. r, �, and z of the cylindrical coordinates are parallel to a�,
b, and c, respectively.
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nate system and three shape parameters: thickness T, radius
R, which is defined at the middle of the thickness, and width
W. Cylindrical coordinate axes r, �, and z correspond to crys-
tallographic axes a�, b, and c, respectively.

We performed x-ray diffraction measurements employing
synchrotron radiation at beam line BL02B1 of SPring-8. We
could obtain intensity 1010 photons /s at the maximum,
which is enough for our samples as small as �10 �m
�50 �m�50 �m. The beam is monochromatized to �
=0.9917–0.9934 Å. A specially designed Gandolfi camera27

is used to simulate powder diffraction photographs. Intensity
is collected using an imaging plate and integrated into inten-
sity vs 2� data.

Structural refinement was carried out by the Rietveld
analysis.28 The peak-shape, prefered orientation, absorption,
background, zero-point, scale, lattice, and crystal structural
parameters were refined using RIETAN-2000 �Ref. 29� soft-
ware. The peak shape is assumed to be a pseudo-Voigt func-
tion. Also it is assumed that the atomic occupancy is 1 and
the isotropic atom displacement parameter is common
among an atomic species. Figure 2 shows a Rietveld analy-
sis. Agreement factors were typically as good as S=1.5,
RWP=4.3, and RI=1.1 The lattice parameters of a single crys-
tal whisker were determined as a=10.008�2�, b=3.4860�7�,
c=15.632�4� Å, and �=109.45�1�°. Only b has a non-
negligible deviation of 0.16% from the measurement of pow-

dered sample.24 This strain is presumably caused when the
whisker sample is cut off. This gives an upper limit of the
uncertainty of our pseudopowder diffraction method.

Further analyses of diffraction profiles are conducted for
two of the ring samples. Isolated diffraction peaks are mea-
sured using a four-circle diffractometer and fitted to Gauss-
ian curves, as shown in Fig. 3. The broadening of peaks is
measured by half widths at half maximum C. C includes
contributions from two factors, nonuniform lattice strain and
finite size of domains of coherent diffraction. They are sepa-
rated by the Williamson and Hall’s method30 in which the
root-mean square of strain distributions ��i �i=a ,b ,c� and
the mean domain size li are related to C as

C cos �

�
=

K

li
+

2��i sin �

�
, �1�

where � is the Bragg angle and K is the Scherrer constant.
We set K=1.0. C cos � /� would be a linear function of
sin � /�, whose slope and intersect correspond to 2��i and 1

li
,

respectively.

III. RESULTS

The lattice parameters of a topological crystal turned out
under certain measure of strain. Volume-averaged lattice
strain �i �an overline denotes an average� is defined with
reference to lattice parameters in Ref. 24. Obtained �i are
plotted in Fig. 4�a� �marks�. Although the data are highly
scattered in b, they have a tendency to contract in a while
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FIG. 2. A Rietveld analysis on a ring sample with T /R=0.19.
The marks and the overlapping curve represent observed and cal-
culated intensity, respectively. The difference between them is plot-
ted below. Ticks are expected peak positions. The agreement factors
are included in the figure.
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FIG. 3. Diffraction profiles of �020� and �600� peaks, for thin
T /R=0.19 �upper� and thick T /R=2.0 �lower� rings. Curves show
Gaussian fits.
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FIG. 4. �Color online� �a� Volume-averaged lattice strain �i �i=a ,b ,c� plotted against a shape parameter T /R. �b� Root-mean-squared
strain �� and �c� mean size of coherent domains li of two ring samples. Circles and triangles represent ring and figure eight, respectively.
Curves show data calculated for different elastic moduli.
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expanding in b and c, monotonously depending on T /R.
Strain in ring and figure-eight samples is alike. Besides, no
lowering of the crystal symmetry is observed. The existence
of 21 screw axis is confirmed by the intensity I�020� / I�040�
	104 for rings and I�020� / I�040�	103 for figure-eight strips.

According to peak profile analyses, ��i has weaker T /R
dependence. Figure 5 shows reasonably linear Williamson-
Hall plots for selected diffraction series: �a� �h00�, �b� �0k0�,
and �c� �00l�. Obtained ��i are exhibited in Fig. 4�b�. While
the magnitude of �i in each direction is alike, ��i in ring
samples are highly anisotropic ���b :��a :��c�100:20:1�
and largest in the chain direction b. As plotted in Fig. 4�c�,
mean size of coherent domains are estimated at roughly
0.2 �m for the interchain directions while it is larger in the
chain direction. These estimations give the lower limit of li
since peak broadening for 0.2–0.4 �m is similar to broad-
ening originating from the measurement apparatus.

IV. DISCUSSION

Let us evaluate lattice strain for the case with an elastic
continuum body. Here we consider a rectangular material,
T�2�R�W in dimensions, bent into a ring. The three prin-
cipal axes of strain should coincide with the cylindrical co-
ordinate axes of the ring. It is inferred that orthogonal crys-
tallographic axes of NbSe3, b, c, and a�, take on them in an
actual crystal. For the sake of simplicity, hereafter we treat
NbSe3 as an orthorhombic material with these axes as the
coordinate axes.

Obviously, it is unrealistic that a ring crystal remains per-
fectly elastic. Assuming that the rotational symmetry is re-

tained so that the deformation is pure bending, an elastic ring
undergoes stress


b�r� = E22
r − R

R
, 
a = 
c = 0, �2�

as a functions of r. Corresponding strain is given by

�b�r� =
r − R

R
, �a = − �21�b, �c = − �23�b. �3�

Eii �i=1–3� and �ij �j=1–3, i� j� represent anisotropic
Young’s moduli and Poisson’s ratios, respectively. According
to these equations, stress would be as large as 10 GPa even
for our thinnest sample �t /R=0.19�, far exceeding yield
stress of usual matters. Moreover, volume-averaged strain in
any direction would be zero in contrast to actual data.

Figure 6 describes a growth model of a ring crystal incor-
porating the generation of dislocations. �a� A beam of NbSe3
crystal is bent into a ring. Here it should be remarked that a
ring crystal tends to grow inward.26 �b� The growth front at
the inner surface is always under contractive stress. How-
ever, while the crystal is defect free, it can outwardly expand
so that the strain profile remains symmetric as Eq. �2�. �c�
When local strain ��b� reaches to an elastic limit k at the inner
surface, the crystal yields. Dislocations with Burger’s vector
�010� are introduced to relax local strain down to �b=�k
�0��1�. We assume �=0 �total relaxation� for the time
being. Dislocations stay on the same atomic layer because
the putative glide plane b-c is normal to the radius. In effect,
the array of dislocations makes a domain wall between two
defect-free cylindrical shells. �d� The subsequent growth ac-
cumulates contractive strain again, and the inner shell ex-
pands while the outer shell presses back. �e� The two shells
attain an equilibrium position depending on their thickness.
When the maximum strain at the growth front reaches to k
again, the process repeats itself.

Now let us estimate strain distribution in this model. Total
strain is given by the linear sum

�i = �i� + �i�, �4�

where �i� and �i� are contributions from bending and inter-
layer pressing, respectively.

�i� would not be as simple as the pure bending solution
�Eq. �3��. While the solution predicts that the ratio of Poisson
strain would be ��a /��c=�21 /�23�1, it is as large as 14 in
actual samples. It is probably because the pure bending so-
lution implies that a-c cross sections are deformed into a
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FIG. 5. The Williamson-Hall plots for diffraction series �a�
�h00�, �b� �0k0�, and �c� �00l�. Filled and open circles represent
peak profiles while dashed and solid lines represent linear fits, of
the thin and thick samples, respectively.

k

α k
r

ε b

FIG. 6. �Color online� A growth model of a ring crystal. The color density indicates the magnitude of the strain, which is contractive in
the inner half and expansive in the outer half. Small insets in �b�–�e� are strain profiles as a function of r. The other inset in �c� illustrates
a domain boundary composed of dislocations formed on one of atomic layers �solid lines�.
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bent rectangle. It causes mismatch at the boundary between
cylindrical shells involving �001� dislocations. However, it is
presumed that �b� reaches to the elastic limit before �c� and
thus �010� dislocations dominate over �001�. Thereby �b�
abruptly changes at the boundaries while �c� should remain
continuous. We adopt the simplest bending deformation that
ensures the continuity of �c�, namely,

�a,n� �r� = − ��21 + �23�31�
r − rn

rn
,

�b,n� �r� = �1 − �23�32�
r − rn

rn
,

�c,n� = 0, �5�

where rn represent the radius of the neutral plane of the nth
layer.

Stress due to interlayer pressing is determined by the dis-
tribution of the neutral thickness and radius of each layer.
Figure 7 illustrates a ring crystal composed of N cylindrical
shells. The size of the nth shell is defined by its outer and
inner radii with no external force applied, ro,n and ri,n, re-
spectively. Its neutral plane is then at rn= �ro,n+ri,n� /2. The
neutral thickness is given by tn=ro,n−ri,n. Stress within the
nth shell is expressed as31


a,n� �r� = An�r�pn−1 + Bn�r�pn,


b,n� �r� = Cn�r�pn−1 + Dn�r�pn, �6�

and 
c,n� =0, where

An�r� =
ro,n

2

r2 	 ri,n
2 − r2

ro,n
2 − ri,n

2 
 ,

Bn�r� = −
ri,n

2

r2 	 ro,n
2 − r2

ro,n
2 − ri,n

2 
 ,

Cn�r� = −
ro,n

2

r2 	 ri,n
2 + r2

ro,n
2 − ri,n

2 
 ,

Dn�r� =
ri,n

2

r2 	 ro,n
2 + r2

ro,n
2 − ri,n

2 
 . �7�

pn represents the radial stress component at the interface be-
tween the nth and the �n+1�th shells, i.e.,

pn = 
a,n� �ri,n� = 
a,n+1� �ro,n+1� . �8�

Strain is then obtained as

�a,n� �r� =
1

E11

a,n� �r� −

�21

E22

b,n� �r� . �9�

Radial displacement un�r� is derived as

un�r� = rn�b,n� �r� , �10�

a linear combination of pn−1 and pn.
Once the distribution of ro,n and ri,n �n=1, . . . ,N� is de-

termined, the condition of continuity of the interface position

ri,n + un�ri,n� = ro,n+1 + un+1�ro,n+1� �11�

provides linear simultaneous equations that are solved for pn
�n=1,2 , . . . ,N−1�. Note that no external stress is applied at
the surface, i.e., p0= pN=0. Then we can calculate stress and
strain from a full set of pn.

We run a numerical simulation of the growth process.
Starting from a thin elastic layer having a neutral radius r1
=40 �m, we increased the thickness of the innermost layer
by small steps, e.g., by one atomic layer ��Å�. An addition
of thickness dt increases ri,n and ro,n by dt /2, respectively.
The growth of a layer stops when ��b�+�b�� reaches to k at the
inner surface and the next �n+1�th layer is formed. Local
strain in the �n+1�th layer is relaxed to zero, i.e., its neutral
plane coincides with the interface such as

rn+1 = ri,n + un�ri,n� . �12�

At the emergence of each layer, we computed the volume
average of layer thickness and strain, and standard deviation
of strain by Simpson’s rule. They correspond to la, �i, and
��i, respectively.

Our simulation depends on six uncertain elastic moduli Eii
and �ij but few of them are arbitrary. The Young’s modulus
along the chain axis of MX3 varies in the range of 100–300
GPa depending on measurement technique: an average of
350 GPa �Ref. 32� for NbSe3, 100 GPa �Ref. 33�, and 350
GPa �Ref. 34� for TaS3, and 200 GPa �Ref. 35� for ZrTe3.
Here we adopt E22=200 GPa. Three additional moduli are
determined from the linear isothermal compressibility of
NbSe3,36 Ka=1.4% /GPa, Kb=0.13% /GPa, Kc=0.59% /GPa,
and K�=−0.17% /GPa, according to

Ki =
1

Eii
+ �

j�i

�ij

Ejj
. �13�

Further, the moduli must be narrowed down in order to give
physically meaningful Poisson’s ratio. If we assume 0.05
��ij �0.45, only remaining arbitrary parameters are E11
=52�6 and E33=2.8E11−58�5 GPa.

The results of calculations are plotted in Fig. 4 for k
=0.44% �arbitrarily chosen� and several combinations of E11
and E33. Better fits are given by more anisotropic combina-
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FIG. 7. �Color online� Geometrical configuration of a ring crys-
tal composed of concentric cylindrical domains. ri,n and ro,n are the
inner and outer radii with no external force applied, which does not
necessarily coincide with actual radii. rn and tn are the radius of
neutral plane and the neutral thickness, respectively.
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tions, e.g., E11=46, E22=200, and E33=77 GPa, implying
that the chain axis is three to five times harder than the oth-
ers. This magnitude of anisotropy agrees with that of thermal
expansion of NbSe3.24 The results reproduce overall qualita-
tive features, namely, the sign and the order of magnitude of
�i and the flatness and anisotropy of ��i. The difference
between experiments and calculations is ascribed to oversim-
plification as well as the uncertainty of elastic moduli. For
example, a local change in growth conditions or the stochas-
tic nature of grain boundary formation may disturb the bal-
ance of interlayer pressing, resulting in scattered �b. In any
case, the major contribution of �a is �a� and it is always
contractive since it originates from interlayer pressure.

Our result clearly suggests the existence of cylinder-
shaped domains bounded by dislocation walls. Dislocation
walls hamper a ring crystal from expanding so that the vol-
ume average of strain is relaxed to zero. The observed fea-
tures, namely, nonzero �i and highly anisotropic ��i, are the
result of this.

An alternative possibility is that dislocations freely pen-
etrate into a ring to negate local bending strain. If that is the
case, however, both �i and ��i would have been far smaller.
In fact, our calculations show that �i and ��i asymptotically
approach zero when elastic limit strain tends to zero, or k
→0, as in Fig. 8�a�. Although quantitative evaluation is dif-
ficult, k should be no less than �0.1%, corresponding to a
reasonable magnitude of yield stress, �100 MPa.

At the other extreme, dislocations may be more sparse.
When the growth front yields, not necessarily totally relax-
ation occurs because of interdislocation repulsion. This is
expressed by 0���1 instead of �=0 and thus

rn+1 =
ri,n + un�ri,n�

1 + �k
�14�

instead of Eq. �12�. At the limit as �→1, every atomic layer
has few dislocations and the relaxation of local strain is in-
complete. A ring crystal would have higher interlayer pres-
sure in the inner half, resulting in larger �i. In fact, as shown
in Fig. 8�b�, ��0 results in greater �i. Also since the inter-

layer pressure is the main source of �c, ��c increases. It
affects in the opposite direction to the stark anisotropy in ��i
in the measured data. Again, although quantitative evaluation
is difficult, the extreme case �→1 would be ruled out.

In summary, we proposed that a ring crystal is composed
of well-ordered domains in the shape of concentric cylinders,
which are divided by walls of dislocations. This should be
one typical aspect when a translational and orientational or-
der is confined in a curved geometry. Possibly, the enhanced
CDW fluctuations in topological crystals are related to the
domain structure. We left the figure-eight geometry for future
studies since its beyond the present approach.
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