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We report measurements of Little-Parks oscillation on the hierarchical honeycomb-superconducting network
for investigating possible effects of hierarchical structure in terms of spatial symmetry, parity, and duality. We
observed an asymmetric Little-Parks oscillation about � /�0=1 /2, although spatial symmetry was kept in the
network. In comparison with a regular honeycomb network, the asymmetric oscillation is attributed to hierar-
chy which induces mixture of commensurate and incommensurate regions. The asymmetric oscillation is found
to indicate breaking of the duality of vortex configuration.
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I. INTRODUCTION

Complexity, more specifically, hierarchical structure has
attracted attention to the problem of decoherence1 leading to
the quantum computing2 and the so-called quantum-to-
classical transition of cosmological perturbations in the early
universe that grew up to galaxies and clusters of galaxies.3–5

Since the hierarchical structure is found in the large-scale
structure of galaxies, it may play an important role for the
generation of the density fluctuation in the early universe.
However, their structural effect on the quantum-to-classical
transition has remained unclear.

Superconducting network allows us to perform a proper
test for the structural effect of hierarchy. In superconducting
networks, the structural properties well affect the physical
properties because this system is sensitive to phase coher-
ence of the order parameter over the network. In fact, phase
interference phenomena are driven by the magnetic field
known as Little-Parks oscillation.6 Characteristic vortex en-
try and configuration of vortices is caused as a result of the
structural effect.7–10 Therefore one can observe the structural
effects as dips or cusps of variation in magnetic field re-
sponses. In addition, complex structure can be easily de-
signed.

Generally, in a spatially symmetric system such as regular
periodic networks �square, triangular, and honeycomb lat-
tices�, the duality on these networks is conserved.11,12 How-
ever, in a hierarchical network, it is a nontrivial issue
whether the duality arises or not. Because their periodicity is
different from that of the regular network although spatial
symmetry of the hierarchical network is kept. In this paper,
we examine possible effects of a hierarchical structure in
terms of spatial symmetry, parity, and duality of order pa-
rameter by using superconducting networks. Our results,
which were observed as an asymmetric Little-Parks oscilla-
tion about � /�0=1 /2, indicates breaking of the duality of
vortex configuration on the network due to the effect of hi-
erarchical structure.

II. EXPERIMENTAL

For our experiment, the so-called hierarchical honeycomb
structure, which was discovered in two-dimensional charge-

density wave system, was adopted.13 In this structure, the
electrons which align on the triangle lattice grow up with
hexagonal smoothing clusters hierarchically. The propaga-
tion law was applied to superconducting networks. This
structure is based on the concept of smoothing and is differ-
ent from a simple fractal form such as Sielpinski gasket.

The lead networks that we used were fabricated by stan-
dard electron-beam lithography. The gold adhesion layer of
0.01 �m and the lead layer of 0.1 �m are thermally evapo-
rated on a SiO2 substrate followed by the resist lift off. To
compare hierarchical structure with regular structure, we also
prepared a regular honeycomb network in the same way.
Figure 1 shows a scanning electron microscope �SEM� im-
age of the samples. The regular sample has about 5000 cells
with lattice constant of 2 �m, line width of 0.6 �m. In the
hierarchical one, the elementary hexagon side length is
2 �m with line width of 0.2 �m and five classes of hierar-
chy.

Little-Parks oscillation is a powerful tool to investigate
the configuration of vortices on the network. Little-Parks os-
cillation is a periodic variation in superconducting transition
temperature �Tc� with the magnetic field by the supercon-
ducting fluxoid quantization.6 Especially when temperature
is near Tc, phase coherence is stretched over the whole sys-
tem. Hence variation of Tc is affected by vortex configura-
tion. Experimentally, Little-Parks oscillation of Tc can be

FIG. 1. SEM image of the samples. �a� The regular honeycomb
network, which has about 5000 cells with lattice constant of 2 �m,
line width of 0.6 �m. �b� The hierarchical honeycomb network.
The elementary hexagon side length is 2 �m with line width of
0.2 �m and has five classes of hierarchy.
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observed as a periodic variation in resistance with the mag-
netic field at fixed temperature, which was taken near the
midpoint of normal-to-superconducting transition.

III. RESULTS AND DISCUSSION

First the regular honeycomb network was investigated as
a control experiment. Figure 2 shows the magnetic-flux de-
pendence of the sample resistance normalized by the normal-
state resistance RN. We found periodic dips indicated by the
arrows. The inset of Fig. 2 shows the index number of dip
positions as a function of the magnetic flux. The slope shows
the period of oscillation as 2.22 G. The area calculated from
the period is 9.3 �m2 and corresponds to a hexagonal unit
cell enclosed by the center of the wire. This value compares
well to the value 9.6 �m2 obtained from SEM observation
with 3% accuracy. Thus the period corresponds to one-flux
quantum �0=h /2e per unit cell.

Figure 3�a� presents the sample resistance as a function of
the filling ratio � /�0, which is the magnetic-flux � in units
of the flux quantum �0 per a hexagonal unit cell, in range
from 0 to 1. The arrows indicate dips with the fundamental
filling ratio of 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, and 3/4. These
fundamental dips appeared in different range, for example,
from 1 to 2, were not shown in the figure. The results seem
like Farey sequence and are consistent with the recent
report.14 Figure 3�b� exhibits error from Farey sequence F5

= � 1
5 , 1

4 , 1
3 , 2

5 , 1
2 , 3

5 , 2
3 , 3

4 , 4
5 � versus the dip positions. Shape of

symbols denotes correspondence relation from the viewpoint
of the symmetry about 1/2. Solid and open symbols denote
0�� /�0�1 /2 and 1 /2�� /�0�1, respectively. Every
dip correspond to F5 within 1.3% accuracy and are clearly
symmetric about � /�0=1 /2.

On the other hand, an asymmetric oscillation was ob-
served in the case of the hierarchical honeycomb network.
We found a periodic variation in the magnetoresistance as
shown in Figs. 4�a� and 4�b�. Measurement noise has been

subtracted. The slope of the line is 2.00 G as shown in Fig.
4�c�. The area estimated from this period is 10.1 �m2 and
correspond to just about an elementary hexagon in compari-
son with 9.8 �m2 deduced from SEM observation with 3%
accuracy.

Some dips expected from the symmetry about 1/2 were
found to be absent as shown in Fig. 5�a�. In Fig. 5, measure-
ment noise has been subtracted. Dips indicated by the arrows
do not fully agree with Farey sequence. In Fig. 5�b�, the dips
of 1/5, 1/3, 1/2, and 3/4 correspond to F5 within 1.3% accu-
racy, the other dips obviously deviate from F5 with accuracy
up to 6%. This result suggests violation of symmetry about
1/2 in the case of the hierarchical honeycomb network.

Now let us discuss the symmetric and asymmetric oscil-
lation about � /�0=1 /2 by considering vortex configuration
on the network. In the case of the regular honeycomb net-
work, vortices are commensurately arranged with its base
structure at rational � /�0. For example, at � /�0=1 /3, one

Slope = 2.22 Gauss / Number

0 10

0.2

0.3

Magnetic flux (Gauss)

R
/R
N

0 5

0

10

M
ag
ne
tic
flu
x
(G
au
ss
)

Number of flux quantum

FIG. 2. The magnetic-flux dependence of the sample resistance
normalized by the normal-state resistance RN. We found periodic
dips indicated by the arrows. The inset shows the index number of
dip positions as a function of the magnetic-flux. The slope shows
the period of oscillation as 2.22 G.
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FIG. 3. �Color online� �a� The sample resistance as a function of
the filling ratio � /�0 in range from 0 to 1. The arrows indicate dips
with the fundamental filling ratio of 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, and
3/4. �b� Error from Farey sequence versus the dip positions. Shape
of symbols denotes correspondence relation in terms of the symme-
try about 1/2. Solid and open symbols denote 0�� /�0�1 /2 and
1 /2�� /�0�1, respectively. Solid line in the center is a guide to
the eye indicating � /�0=1 /2. Every dips correspond to F5 within
1.3% accuracy. The inset is vortex configuration on the regular
honeycomb network. The unit cells occupied with vortices are
shown shaded. Left side is at � /�0=1 /3 and right side is � /�0

=2 /3. Spatial vortex configuration of 2/3, is essentially identical to
that of 1/3.
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vortex is allocated in every three unit cell that is shown
shaded in the inset of Fig. 3�b�. This configuration is strongly
pinned and energetically stable. At � /�0=2 /3, two vortices
are allocated in every three unit cells in the same way. When
the position occupied with vortex is replaced by the position
without vortex, spatial vortex configuration of 2/3, is essen-

tially identical to that of 1/3. Both states have energetically
same eigenvalue. This is a duality of vortex configuration.
Vortex configuration is globally determined at rational mag-
netic field.

On the other hand, in the case of the hierarchical honey-
comb network, the asymmetric oscillation indicates breaking
of the duality of vortex configuration although the system
has symmetric structure. To explain the asymmetric oscilla-
tion we propose a model of vortex configuration as shown in
Fig. 6. Blue and red denote commensurate and incommensu-
rate region where vortices are allocated, respectively. Color
depth denotes density of vortices. Figure 6�a� shows the con-
figuration at 1/3, where in some regions vortices are com-
mensurately allocated with base structure and other regions
are not, since some different areas exist in the hierarchical
honeycomb structure. According to the duality of vortex con-
figuration like the regular case �see the inset of Fig. 3�b��, the
configuration corresponding to 2/3 is depicted in Fig. 6�b�. In
spite of duality operation, the configuration of 2/3 is not dual
for that of 1/3. There are no commensurate regions because
the base structure in incommensurate regions at 1/3 and 2/3
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FIG. 4. The magnetic-flux dependence of the sample resistance normalized by RN. �a� In range from −10 to 0 G. �b� In range from 0 to
10 G. The arrows indicate periodic dips. �c� The index number of dip positions as a function of the magnetic flux. The slope of the line is
2.00 G.
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FIG. 5. �Color online� �a� The sample resistance as a function of
the filling ratio � /�0 in range from 0 to 1. The arrows indicate
fundamental dips. �b� Error from Farey sequence versus the dip
positions. Same notation as in Fig. 3 is used. The dashed arrows are
guides to the eye indicating correspondence in terms of the symme-
try about 1/2. Dips of 1/5, 1/3, 1/2, and 3/4 correspond to F5 within
1.3% accuracy. The other dips deviate from F5 with accuracy up to
6%.
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FIG. 6. �Color online� The model of vortex configuration on the
hierarchical honeycomb network. Blue and red denote commensu-
rate and incommensurate region where vortices are allocated, re-
spectively. Color depth denotes density of vortices. �a� At � /�0

=1 /3. In some regions vortices are commensurately allocated with
base structure and other regions are not. �b� At � /�0=2 /3. In spite
of duality operation, the configuration of 2/3 is not dual for that of
1/3.
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is the same. This model could suggest that these states have
energetically different eigenvalues and explain the asymmet-
ric oscillation about 1/2, in particular, absence of dip at 2/3 in
the hierarchical honeycomb network.

Our result is different from the result of the Sierpinski
gasket.15 As far as this result is concerned, it is found to be
symmetric about 1/2. Therefore, the duality of vortex con-
figuration is conserved. Additionally, vortex configuration is
not globally determined at any magnetic field because their
characteristic length is absent. Hence the asymmetric pattern
is due to the effect of the hierarchical honeycomb structure in
itself.

Finally we have some comments for general properties of
our hierarchical structure. Strong pinning of vortices means
phase fluctuation of the order parameter is very small or its
phase is determined spatially and temporally. If similar hier-
archical structure is existed in some systems, the regions
where its phase is determined could be appeared spontane-
ously with spatial dependence. This concept might be ap-
plied to the problem of decoherence in complex systems.

IV. SUMMARY

We measured Little-Parks oscillation in the hierarchical
superconducting network for investigating effects of hierar-
chical structure in terms of spatial symmetry, parity, and du-
ality. We observed the asymmetric Little-Parks oscillation
about � /�0=1 /2, although spatial symmetry was kept in the
network. In comparison with a regular honeycomb network,
the asymmetric oscillation is attributed to hierarchy which
induces mixture of commensurate and incommensurate re-
gions. The asymmetric oscillation is found to indicate break-
ing of the duality of vortex configuration.
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