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A cycloid, formerly known as a roulette, is a curve arising from a point on a circumference that rolls on

its plane over a fixed straight line, and the cycloid shape is observed in many natural objects formed

under a constraint. Here we report the discovery of cycloid-shaped crystals of TaSe3 obtained via the

‘‘topology-change surgery’’ of thin ring-shaped crystals. We cut the ring-shaped crystals with a focused

under magnetic and electric fields. We conclude that the inhomogeneous curvature distribution

minimizes the bending energy and shear modulation, which corresponds to our shear-less model.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The mathematical study of the cycloid (named by Galileo) was
very fashionable in the 17th century. Pascal calculated its centre
of gravity and its area, Huygens calculated the movement of a
material point along a cycloid, and Bernoulli studied a cycloid as a
brachistochrone (curve of fastest descent). In nature, the cycloid
shapes have been observed, such as the cycloidal patterns on
Europa (Jupiter’s moon) [1], concave profiles of mountains [2],
and topological defect structures in two-dimensional liquid crys-
tals [3], since the cycloid shape is a universal structure derived
from Lagrangian calculus of variations under some constraint,
namely boundary conditions.

Constraints relate to topology of systems closely, and must
change when the topology changes. Thus topology must be a
powerful controllable parameter to investigate topological mat-
ters in nature, such as a Möbius strip of soap film [4], nanotubes
[5] and fullerenes [6], and knots and links of crystals [7–12]. In
this paper, we show the cycloid-shaped crystals of TaSe3, which
were obtained by ‘‘topology-change surgery’’ for ring-shaped
crystals with diameters of 1–100 mm. We demonstrated to cut
the rings with a focused ion beam [13–15], then they opened for
relaxation of elastic energy and formed a curve of the cycloid
family, namely trochoid curves.
ll rights reserved.

ura).
2. Experimental

Ring-shaped crystals, a group of crystals with topologically
nontrivial disclinations, such as Möbius strip (p twisted ring),
figure-of-8 (2 p twisted ring), polyhedral, and Hopf-link crystals,
have also been synthesized in MX3 (M: Ta, Nb, and X: S, Se)
systems [7–12]. These crystals have pled to new scientific interest
in the macroscopic quantum states of charge density waves
[13,16–20] and superconductivity [14,21,22] on multi-connected
space, and in the problems of interplay between local crystal
order and global topology [15,23,24]. While the topological forms
of the crystals are similar to nanotubes, their sizes are relatively
large (carbon nanotubes are typically of the order of a few
nanometers in diameter).

When the ring-shaped crystals are cut, what shape would the
crystals become in the open-ring constraint? In the case of thick
ring-shaped crystals, the open-ring crystals became arc shape
with constant curvatures [15], since the topological defects
induced in the ring-shaped crystals homogeneously along the
circumferences are dominant. On the other hand, what shape
would be realized in the limit of thin thickness? Suppose that a
single atomic layer is rolled and becomes a seamless ring. Since
the layer is bent and has a finite curvature, the bending energy
must be increased. Note that the topology of the ring must be
maintained while the bonding energy is lower than the bending
energy. If we can cut a single wall carbon nanotube, it becomes a
single graphene sheet [25,26], and the curvature becomes zero
after cutting to relax the bending energy. Fig. 1(a) shows a
schematic diagram of the topology change of single atomic layer
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Fig. 1. Schematics of transformation of the ring-rod by topology-change surgery for single-layered ring (a) and double-layered ring (b). (c) Bending energy density (red

curve) and shear energy density (yellow curve) for ring-rod [(b) left panel] and the cut-ring [(b) right panel]. S0 ¼ 2pR is the total length of the rod, where R is the initial

radius of the ring-rod. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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rings. With a rolled double layer, as shown in Fig. 1(b), the
interaction between the layers gives the curvature a finite value
even after cutting, since the difference of the numbers of atoms in
the layers causes shear modulation when the double layer ring is
opened. The energy densities of bending and shear for the double
layer ring shown in the left and right panels of Fig. 1(b),
respectively, are depicted schematically in Fig. 1(c). The closed
double layer ring has a homogeneous bending energy density, and
there must be no shear modulation. When the ring is forced to be
straight, the difference in the number of atoms induces shear
modulation. In term of symmetry, the shear magnitude must be
zero at the center of the layers, and have its maximum value at
the ends. The final form of the multi-layer ring, for example
multi-wall carbon nanotubes and thin ring-shaped crystals
should be determined by the balance of the shear energy and
bending energy.

We propose that the shapes with minimized shear are
slipping-cycloid curves, showing an experiment of topology-
surgery for thin ring-shaped crystals of TaSe3. A TaSe3 crystal
has a monoclinic crystal structure with lattice constants
a¼ 10:402 Å, b¼ 3:495 Å, c¼ 9:829 Å, and b¼ 106:261 [27] and
the circumference of the ring-shaped crystal is parallel to b axis
[7,8,15,24]. Using a focused ion beam microfabrication technique,
we cut the rings, then found that they opened for relaxation of
elastic energy and formed a curve of the cycloid family. We took
care to minimize the ion-beam irradiation to whole of the ring-
shaped crystals to avoid damage except the cutting parts. Thus
the curvatures of the open-rings are dominated by the internal
strains induced by the global constraint while crystal growth, and
are not a result of modulation induced by the ion-beam irradia-
tion, which have been reported for composite thin layer struc-
tures [28].
3. Fitting analysis and discussions

A cycloid curve is the trace of a point on a circle rotating on
plain, and is also known as a Brachistochrone curve of mass
motion under homogeneous gravity. The cycloid curve can be
expanded by one parameter ks to express a change of curvature
from a circle to a straight line, as follows. If a rotating circle with
radius a is slipped, the trace is expressed as

xout ¼ aðksyþsin yÞ, ð1Þ

yout ¼ að1�cos yÞ: ð2Þ

This curve is known as a trochoid curve, which expresses
trajectories of moving electrons in static electric and magnetic
fields, and the structure of wave profile for the water surface. The
slipping-cycloid (trochoid) curves with various slipping para-
meters are plotted in Fig. 2(a). When ks ¼ 1, the curve corresponds
to a cycloid. For ks ¼ 0, the curve becomes a circle with radius a,
and in the limit of ks ¼1, it becomes a straight line. A family of
the slipping-cycloid curves, the second layer separated by dis-
tance l from the first layer, is expressed as

xin ¼ a�
l

2

� �
ðk0sy

0
þsin y0Þ, ð3Þ

yin ¼ aþ
l
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Here, we must find the relations between ks and k0s, and y and y0 in
the condition of minimum shear using Fig. 2(b) and (c). In each
figure, the red/blue dotted circle is a circle with a center B/B’
rotating with parameter ks/k0s. The radius of the blue circle is
given by a0 ¼ a�l=2. The red/blue solid curve corresponds to each
slipping-cycloid curve given by the above equations. The line EF
in Fig. 2(b) [E0F0 in (c)] is the tangent line at D (D0). Line CD (C0D0) is
perpendicular to EF (E0F0). In other words, C (C0) is the crossing
point of line AB (AB0) and line CD (C0D0). If points C and C0 can be
on the same point, the shear modulation between two layers is
zero when l is sufficiently small. Using this condition (C¼ C0), the
relations are given by

k0s ¼
ks�

l

2a

1�
l

2a

, ð5Þ

y0 ¼
y

1�
l

2aks

: ð6Þ



Fig. 2. (a) Slipping-cycloid curves for slipping parameters ks ¼ 0, 0.5, 0.75, 1, and 2, respectively. Radius of each rotating circle (a) is set at 1. (b) and (c) drawings of outer

and inner layers using the slipping-cycloid curves, respectively. The parameters are described in the text. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Surprisingly only slipping-cycloid curves satisfy the above
condition.

To confirm that slipping-cycloid curves exist in nature, we
compare the form of thin open-ring crystals in the topology-
change surgery experiment [15] with a slipping-cycloid curve
(trochoid) and the following natural curves; circle, ellipse, para-
bola, catenary, hyperbola, and buckling [see Appendix for details
of the fitting curves]. If the final form was fitted to a circle (arc),
the relaxation of the bending energy was homogeneous. In that
case, only the bending energy was associated with the relaxation.
If the curvature changed inhomogeneously at the position of the
crystal, it meant that the topology-change surgery caused shear
modulation.

Fig. 3(a)–(c) is scanning ion beam microscopy (SIM) images of
thin ring crystals of TaSe3 before and after topology-change
surgery. Their thicknesses were less than the characteristic
thickness t [15], which means that no cylindrical domain walls
were introduced in these ring-shaped crystals. The surgery was
performed using a FIB microfabrication technique that was cap-
able of cutting micrometer-size ring-shaped crystals while mini-
mizing any damage. The surgery opened the thin rings and
relaxed their bending energy, and their radius of curvature more
than double. The coordinate data (x,y) for open-ring crystals were
read from the SIM images shown in Fig. 3(a)–(c), and are plotted
with open dots in Fig. 3(d)–(f), respectively. Note that each
coordinate (x,y) is normalized by the initial radius of each ring-
shaped crystal. Fitting analysis was performed while minimizing
the average values of ðDxÞ2 [1=N

P
NðDxNÞ

2, where DxN is the
difference between the x coordinate of the Nth experimental data
and that of each theoretical fitting curve; DxN ¼ xN�xfitðyNÞ]. The
fitting parameters and the average values of ðDxÞ2 are summar-
ized in Table 1.

We found that a trochoid, circle, and ellipse fit the form of the
open-rings better than a parabola, catenary, hyperbola, or buck-
ling. The average values of ðDxÞ2 for a trochoid, circle, and ellipse
are one order smaller than other curves. We note that this result
is consistent with the statement in Ref. [15], where the forms of
all open-ring crystals are considered to be circle arcs. An ellipse
fits rather than a circle, an ellipse has two fitting parameters.
Since a trochoid also has two fitting parameters, ks and a, an
ellipse and trochoid become similar fitting curves. The main
difference between trochoid and ellipse can be seen at the ends
of the crystals. Shown in the insets of Fig. 3(d)–(f), which focuses
on the ends, the trochoid curves fit the experimental data better
than the ellipse. These parts are the main difference between a
trochoid and an ellipse. The radius of curvature of a trochoid (for
ksr1) becomes small near the ends, and this feature is the same
as that of the experimental data. The average values of ðDxÞ2 only
at the two ends of the crystals for trochoid curves were obviously
smaller than those of an ellipse or a circle. These results indicate
that the final form of the open-ring crystals is determined not
only by the bending energy, but also by the shear modulation.
Since the shear modulation must increase near the ends, thin
ring-shaped crystals adopt forms from the slipping-cycloid family
to reduce the shear modulation and bending energy.

The shear modulation must be increased when the ring-
shaped crystals open. The free length of the crystal axis along
the circumference with the inner radius is smaller than that with
the outer radius, because the crystal dislocations have been
initially introduced into the ring-shaped crystals to reduce the
bending energy. After the topology-change surgery, the difference
of the free length, however, disturbs relaxation of the bending
energy of the crystals. The final curvature must be finite, because
of the competition of bending stress and internal bending torque
generated from edge dislocations [15]. Thus the strain Ex ¼ E0xþEnx ,
where E0x is the strain proportional to stress, and Enx is the eigen
strain associated with plastic deformation. Enx represents the
dislocation distribution inside the crystals introduced while the
crystals were growing due to the global constraint of the ring-
shape. To release the bending strain E0x, the crystals can make
shear modulation gxy via the strain compatibility equation
@2Ex=@y2þ@2Ey=@x2�@2gxy=@x@y¼ 0. Furthermore, the rigidity
modulus G of the TaSe3 crystals must be small because they are
bundles of covalently-connected one-dimensional crystal chains
with a relatively weak van der Waals force, and the shear
modulation could be induced easily.

The distribution of the shear modulation inside the crystals is
expected as follows. The strain and stress of the open-rings are
symmetric against the center, and the shear modulation is zero at
the center, because the shear in the closed-ring before surgery is
assumed to be macroscopically zero. After the surgery, the open-
ring crystals have two ends. Due to the boundary conditions, at the
ends of the crystals both the stress along the one-dimensional
chain and the shear modulation must be zero. Thus the shear
modulation could be increased only at the middle of the cut-ring
crystals, where the bending energy is more relaxed, and at the ends
of crystals, it could not contribute to releasing the bending energy,
and the curvature closes to the initial curvature of the ring-shaped
crystal before cutting. Therefore, the curves of the cut-ring crystals
become the slipping cycloid curves. The curvature distribution



Fig. 3. (a)–(c) Topology-change surgery for two thin ring-shaped crystals. The images were obtained by scanning ion beam microscopy (SIM) with a focused ion beam

system. (d)–(f) Final forms of open-ring crystals for (a)–(c), respectively. Coordinates ðx,yÞ, obtained from SIM images (a)–(c), are normalized by the initial radius of each

ring-shaped crystal. Trochoid (slipping-cycloid with slipping parameter ks), circle, ellipse, catenary, parabola, hyperbola, and buckling curves are compared with

experimental data. The origin of the coordinates for each fitting curve is (x,yÞ ¼ ð0,0), and each fitting curve is obtained by minimizing the average values of the squares of

the difference of the x direction for all data (Ave. ðDxÞ2).
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Table 1
Fitting parameters used for fitting curves in Fig. 3(d), (e) and (f). The average

values of the squares of the difference of the x direction for all experimental data

(Ave. ðDxÞ2) and that for two ends (Ave. ðDxÞ2 at ends) are displayed.

Fitting curve Fitting parameter(s) Ave. ðDxÞ2 Ave. ðDxÞ2 at ends

Trochoid ks ¼ 0:95, a ¼ 0.803 0.0080 0.0008

Circle a ¼ 2.80 0.0084 0.0087

Ellipse a ¼ 2.80, b ¼ 2.82 0.0084 0.0078

Parabola a ¼ 2.12 0.020 0.060

Catenary a ¼ 1.62 0.011 0.029

Hyperbola a ¼ 1.25, b ¼ 1 0.063 0.31

Buckling a ¼ 3.35, b ¼ 5 0.022 0.11

Trochoid ks ¼ 0:36, a ¼ 1.34 0.0019 0.0003

Circle a ¼ 2.28 0.0019 0.0035

Ellipse a ¼ 2.27, b ¼ 2.23 0.0018 0.0033

Parabola a ¼ 1.80 0.018 0.068

Catenary a ¼ 1.20 0.028 0.052

Hyperbola a ¼ 0.90, b ¼ 1 0.091 0.044

Buckling a ¼ 2.70, b ¼ 5 0.026 0.045

Trochoid ks ¼ 0:0001, a ¼ 1.21 0.00048 0.00106

Circle a ¼ 1.21 0.00048 0.00113

Ellipse a ¼ 1.2, b ¼ 1.21 0.00067 0.00085

Parabola a ¼ 0.87 0.090 0.41

Catenary a ¼ 0.55 0.065 0.206

Hyperbola a ¼ 0.46, b ¼ 1 0.132 0.582

Buckling a ¼ 1.3, b ¼ 4.3 0.096 0.536
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with the shear modulation is enhanced for thin cut-ring crystals
with thinner than about 1 mm, because, for thicker rings than about
1 mm, cylindrical domain walls introduced into the ring and the
crystal curvatures are dominated by them [15,24].
4. Summary

In summary, we discussed the final form of thin ring-shaped
crystals and proposed the slipping-cycloid model. The model is
consistent with a shear-less condition, and describes the form
from a ring to a straight line with the slipping parameter ks. We
compared the model curves with the experimental results of
topology-change surgery for thin ring-shaped crystals of TaSe3,
and found that the ring-shaped crystals are transformed into
slipping-cycloid (trochoid) curves by topology-change surgery.
Cycloid crystals realized in superconductors and charge density
wave conductors will lead to new electrical transport experi-
ments for quantum brachistochrones [29]. These results also
indicate that the conversion of the bending energy and shear
modulation plays an important role to determine the global shape
of the topological crystals and also topology-change for nano-
tubes [25,26], and might be a crucial factor of functions with
global shape transformation of in micro- and bio-mechanical
systems [28].
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Appendix A

Circle and ellipse are found in nature. For example, the
trajectories of planets rotating around the Sun are ellipse curves.
The coordinates (x,y) of a circle or ellipse passing through (0,0) are
expressed as

x¼ a sin y, ð7Þ

y¼ bðcos y�1Þ, ð8Þ

where y is a parameter. When constant a is equal to b, it is a circle.
The trajectory of a particle under gravity is a parabola, given by

y¼ ax2: ð9Þ

A catenary is a curve of the string in homogeneous gravity when
its ends are fixed. The coordinates (x,y) of a catenary are described
with one constant a, such as

y¼ aðcoshðx=aÞ�1Þ: ð10Þ

A hyperbola expresses the trajectory of particles with Rutherford
scattering, given by

x¼ a sinh y, ð11Þ

y¼ bðcosh y�1Þ: ð12Þ

The shape of a long elastic rod applied on a compressing force is
called a buckling curve. The coordinate of the buckling curve is
described with constants a and b, such as

y¼ b cosðx=aÞ: ð13Þ

Using these curves as fitting curves, we compared them with the
experimental data for open-ring crystals of TaSe3.
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