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We consider relativistic fluid flow under Chern–Simons modified Maxwell theory and
under Chern–Simons modified gravity theory. We take account of the effects of Chern–
Simons corrections on the quantities of fluid flow that is conserved without the Chern–
Simons corrections. We find that the conservations of several quantities are generally
broken by the Chern–Simons corrections.
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1. Introduction

The study of symmetry is requisite in modern physics. A typical example can be

found in the standard theory for the interactions between elementary particles.

In contrast, the discoveries of symmetry breaking phenomena have opened new

frontiers in physics.1–4 Further detections of such phenomena might provide a sig-

nature of new physics. Chern–Simons (CS) modified theories5,6 are candidates for

the theories that describe the breaking of parity symmetry. The CS modified theo-

ries have attracted a lot of attentions in the context of exploring new physics.7–10

The CS modified Maxwell theory5 is constructed from the usual electromagnetic

action with a CS term. Similarly, the CS modified gravity theory6 is constructed

from the Einstein–Hilbert action with a CS term. The CS terms violate the parity

symmetry. In previous works, electromagnetic and gravitational fields have mainly

been investigated.11–21 In this paper, we discuss the effect of the symmetry breaking

terms on fluid flow under the CS modified theories.
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This paper focuses on conserved quantities of fluid. For its discussion, it is useful

to adopt the Lagrangian description,22,23 in which each fluid particle is assigned a

label, i.e. Lagrangian coordinates at the initial time. In the Lagrangian coordinates,

mass evaluated in a closed region is conserved under time evolution. Similarly, for

perfect fluid, circulation is also conserved. These facts are valid even when we take

account of general relativity.22,23 Furthermore, we can encounter other conserved

quantities, e.g., fluid helicity,24–27 magnetic helicity and cross helicity.28–30,27 The

last two quantities are considered for fluid interacting with electromagnetic fields.

In this paper, we deal with the above-mentioned conserved quantities within a

general relativistic framework and take account of the corrections induced by the

CS modified theories.

This paper is organized as follows. In Sec. 2, we consider fluid flow interacting

with electromagnetic fields under the CS modified Maxwell theory. Utilizing the

Lagrangian description, we discuss the conservation of mass (or energy), circula-

tion, and fluid helicity. We also investigate magnetic helicity and cross helicity. In

Sec. 3, we deal with fluid flow under the CS modified gravity theory. We discuss the

conserved quantities in the same way as in Sec. 2. Finally we provide a summary

in Sec. 4. Throughout the paper, we use geometrized units with c = G = 1.

2. Fluid Flow in CS Modified Maxwell Theory

2.1. CS modified Maxwell theory

The action of the CS modified Maxwell theory is provided by5

IEM =

∫

d4x

(

− 1

16π
FµνF

µν +
1

8π
vµ

∗FµνAν

)

, (1)

where Aµ is the four-potential, Fµν ≡ ∂µAν − ∂νAµ is the field-strength tensor,
∗Fµν ≡ 1

2
εµνλσFλσ is the dual field-strength tensor, and vµ is an external four-

vector called the embedding vector. Here, εµνλσ denotes the Levi–Cività tensor with

ε0123 = 1. Raising and lowering the indices of tensors are done by the Minkowski

metric ηµν and ηµν . The second term in the integrand in Eq. (1) is called the

CS term. The embedding vector vµ is now assumed to satisfy ∂µvν = 0 to en-

sure gauge invariance.5 The dual field-strength tensor satisfies the Bianchi identity

∂µ
∗Fµν = 0. The variation of the action with respect to Aµ gives the left-hand side

of the electromagnetic field equation

∂νF
µν + vν

∗Fµν = 4πJµ , (2)

where Jµ is the electric four-current. The second term on the left-hand side in this

equation stems from the CS term in Eq. (1). Thus the field equation of the Maxwell

theory is modified by the CS correction as in Eq. (2).
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2.2. Basic equations for fluid flow

The basic equations for fluid flow under the CS modified Maxwell theory can be

obtained from the conservation law of energy–momentum tensor T µν. The energy–

momentum tensor is composed of the fluid part T µν
m and the electromagnetic part

T µν
em , i.e.

T µν = T µν
m + T µν

em . (3)

For the fluid part, we assume perfect fluid

T µν
m = (ρ+ p)uµuν + pηµν , (4)

where ρ is the energy density, p is the pressure, and uµ denotes the four-velocity

field of fluid particles (uµuµ = −1). In the CS modified Maxwell theory, the elec-

tromagnetic part T µν
em is given by5

T µν
em =

1

4π

(

FµλF ν
λ − 1

4
ηµνFλσF

λσ +
1

2
vν ∗FµλAλ

)

. (5)

From the conservation equation ∂µT
µν = 0, using Eqs. (2), (3) and (5), we obtain

∂µT
µν

m = F νλJλ . (6)

This equation can be divided into two parts, i.e. the component parallel to uµ and

the components orthogonal to uµ. The former gives the continuity equation

(ρuµ),µ + puµ
µ = 0 , (7)

where a comma denotes the partial differentiation with respect to coordinates. The

latter gives the equation of motion

(ρ+ p)uνuµ
ν + Pµνp,ν = FµνJν , (8)

where Pµν ≡ ηµν + uµuν is the projection tensor. In deriving Eqs. (7) and (8), we

used the ideal magnetohydrodynamics approximation uµF
µν = 0. We now assume

barotropic fluid, for which new variables s and h can be introduced as31,23

s ≡ exp

(
∫ ρ dρ

ρ+ p

)

, (9)

h ≡ exp

(
∫ p dp

ρ+ p

)

. (10)

The functions s and h correspond to the specific entropy and the specific enthalpy,

respectively.31,23 When the pressure vanishes, we have s = ρ and h = 1 by taking

appropriate constants of integration in the integrals in Eqs. (9) and (10). By using

s and h, Eqs. (7) and (8) are rewritten, respectively, as

(suµ),µ = 0 , (11)
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uνuµ
,ν + Pµν(ln h),ν = Nµ − V µ , (12)

where

Nµ ≡ 1

4π(ρ+ p)
Fµ

λF
λσ

,σ , (13)

V µ ≡ 1

16π(ρ+ p)
∗FλσFλσv

µ . (14)

To derive Eq. (12), we used the identity

∗FµλFνλ =
1

4
δµνF

λσFλσ , (15)

where δµν denotes the Kronecker delta. In Eq. (12), V µ comes from the CS correc-

tion. Thus while the continuity equation (11) is unchanged, the equation of motion

(12) is changed due to the CS correction.

We also discuss vorticity of fluid. For this purpose, let us define the four-vorticity

ωµ as

ωµ ≡ 1

2
εµνλσuνuλ,σ . (16)

The spatial components of the four-vorticity give the usual three-vorticity ∇× vf

when the motion is nonrelativistic, i.e. uµ ≃ (1, v i
f ) and |vf | ≪ 1, where the Latin

index i runs over the spatial coordinates. We emphasize that the temporal com-

ponent of ωµ gives the density of fluid helicity vf · (∇ × vf) in the nonrelativistic

case (see also Refs. 24, 25 and 27). Hence, ωµ may be regarded as the four-current

of fluid helicity. This fact gives us a new insight that we can treat both helicity

and circulation of fluid in a unified way by adopting the four-vorticity ωµ defined

in Eq. (16). Furthermore, we can easily recognize the transformation law of helic-

ity density under a coordinate transformation. Under a coordinate transformation

xµ → x′µ, the helicity density ω0 is transformed according to the transformation

law ωµ → ωµ′

= (∂x′µ/∂xν)ων . From Eq. (12), we obtain the differential equation

for ωµ,
(

hωµ

s

)

,ν

uν

h
− hων

s

(

uµ

h

)

,ν

=
1

s
[(Nνω

νuµ + ∗Mµνuν)− (Vνω
νuµ + ∗Wµνuν)] , (17)

where

∗Mµν ≡ 1

2
εµνλσNλ,σ , (18)

∗Wµν ≡ 1

2
εµνλσVλ,σ . (19)

Here ∗Mµν and ∗Wµν are interpreted as rotational parts of the derivatives of Nµ

and Vµ, respectively. Thus when an electromagnetic field or the CS correction exists,

the vorticity equation becomes an inhomogeneous equation as seen in Eq. (17).
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Consequently, the basic equations for fluid flow under CS modified Maxwell

theory are given by the field equation (2), the continuity equation (11), the equation

of motion (12) and the vorticity equation (17).

2.3. Lagrangian description of fluid flow

We deal with the fluid motion from the viewpoint of the Lagrangian description.

We adopt the Lagrangian coordinates22,23

xµ = (τ, xi) = (τ,x) , (20)

where τ is the proper time of a fluid particle and xi is constant along a line of fluid

flow. In this coordinates, the four-velocity becomes

uµ =
dxµ

dτ
= δ0µ = (1, 0, 0, 0) . (21)

Adopting the Lagrangian coordinates is equivalent to taking the four-velocity in

the form of Eq. (21). Equation (21) is called the Lagrangian condition.22,23 When

we use the Lagrangian condition, the metric ηµν and the partial derivative ∂µ in

Eqs. (2), (11), (12) and (17) must be replaced with the general metric gµν and

the covariant derivative ∇µ, respectively, because the coordinates are no longer

Cartesian. Furthermore, the Levi–Cività tensor is redefined as ε0123 = 1/
√−g,

where g is the determinant of gµν . In the Lagrangian description, the metric is

changed with fluid motion, while the coordinates of fluid particles are fixed.

Let us discuss the continuity equation (11) using the Lagrangian condition (21).

Equation (11) gives
(√−gs

)

,0
= 0 . (22)

Thus we obtain

s(τ,x) =

√

g(τ0,x)

g(τ,x)
s(τ0,x) . (23)

When the pressure is negligible, Eq. (23) reduces to

ρ(τ,x) =

√

g(τ0,x)

g(τ,x)
ρ(τ0,x) . (24)

Therefore, Eqs. (23) and (24) lead to the conservations of entropy density
√−gs

and energy density
√−gρ, respectively, in the Lagrangian coordinates.

Next we discuss the vorticity equation (17) using the Lagrangian condition (21).

Here it should be noted that the temporal component of ωµ is not independent of

the spatial components because we have ω0 = g0iω
i from the equality uµω

µ = 0.

Hence we focus on the spatial components of ωµ. The spatial components of Eq. (17)

give
(

hωi

s

)

,0

=
h

s
(∗M iν − ∗W iν)uν . (25)
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Thus we obtain

h(τ,x)ωi(τ,x) =

√

g(τ0,x)

g(τ,x)

[

h(τ0,x)ω
i(τ0,x) + s(τ0,x)

×
∫ τ

τ0

dτ ′
h

s
(∗M iν − ∗W iν)uν

]

, (26)

where we have used Eq. (23). When the pressure is negligible, Eq. (26) reduces to

ωi(τ,x) =

√

g(τ0,x)

g(τ,x)

[

ωi(τ0,x) + ρ(τ0,x)

∫ τ

τ0

dτ ′
1

ρ
(∗M iν − ∗W iν)uν

]

. (27)

Equation (26) (or (27)) means that the spatial components
√−ghωi (or

√−gωi)

is conserved in the absence of both the rotational part of electromagnetic force

and the CS correction. In particular, when the pressure is negligible, we can obtain

the conservation of four-vector density
√−gωµ directly from Eq. (17). In such a

case, therefore, the conservations of helicity and circulation can be obtained in a

unified way within a relativistic framework. In the presence of the rotational part of

electromagnetic force or the CS correction, the conservation law concerning vorticity

is broken. The integral terms in Eqs. (26) and (27), which are independent of ωi,

become sources of three-vorticity. It means that even if ωi vanishes everywhere at

the initial time, the spatial components of vorticity may be created at some time.

The temporal component of the four-vorticity can be derived from ω0 = g0iω
i as

mentioned above. When the pressure vanishes, ω0 is obtained directly from Eq. (17),

ω0(τ,x) =

√

g(τ0,x)

g(τ,x)

[

ω0(τ0,x) + ρ(τ0,x)

∫ τ

τ0

dτ ′
1

ρ

×{(Nνω
ν + ∗M0iui)− (Vνω

ν + ∗W 0iui)}
]

. (28)

The terms ∗M0iui and ∗W 0iui in the integrand are independent of ωµ. This fact

means that helicity density may also be created irrespective of the values of ωµ.

Therefore, not only the conservation of circulation but also the conservation of

helicity is generally broken in the CS modified Maxwell theory.

2.4. Magnetic helicity and cross helicity

Let us discuss magnetic helicity and cross helicity in the CS modified Maxwell

theory. These quantities are conserved under certain conditions in ordinary mag-

netohydrodynamics. In this subsection, we use the Cartesian coordinates, in which

the metric reduces to the flat Minkowski metric.

We define the magnetic helicity four-current H µ
m as

H µ
m ≡ ∗FµνAν . (29)
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Using the identity (15), we derive for ideal magnetohydrodynamics

∗FµνFµν = −4uµ
∗FµλuνFνλ = 0 . (30)

Thus we obtain

H µ
m ,µ =

1

2
∗FµνFµν = 0 . (31)

Therefore, the magnetic helicity four-current H µ
m is conserved even in the CS

modified Maxwell theory.

Next we discuss the cross helicity four-current H µ
c defined by

H µ
c ≡ ∗ωµνAν , (32)

where ∗ωµν ≡ 1
2
εµνλσuλ,σ. For ideal magnetohydrodynamics, we obtain

H µ
c ,µ =

1

2
∗ωµνFµν =

1

2
Bµ[(ln h),µ + Vµ] , (33)

where Bµ ≡ ∗Fµνuν denotes the magnetic field. The last term on the right-hand

side, which is proportional to BµVµ, arises from the CS correction. When the right-

hand side in Eq. (33) does not vanish, the conservation of cross helicity is broken.

Therefore, the cross helicity four-current is not generally conserved in the CS mod-

ified Maxwell theory.

3. Fluid Flow in CS Modified Gravity

3.1. CS modified gravity

The action of the dynamical CS modified gravity is provided by6,18

IG =

∫

d4x
√−g

[

− R

16π
+

ℓ

64π
ϑ∗Rτ µν

σ Rσ
τµν −

1

2
gµν(∂µϑ)(∂νϑ)− V (ϑ) + Lm

]

,

(34)

where R ≡ gαβRαβ (Rαβ ≡ Rλ
αλβ) is the Ricci scalar, Rτ

σαβ ≡ ∂βΓ
τ
σα − · · · is

the Riemann tensor (Γα
βγ is the Christoffel symbols), ℓ is a coupling constant, ϑ

is a dynamical scalar field, V is a potential, and Lm is the Lagrangian density

for matter. The dual Riemann tensor is defined by ∗Rτ µν
σ ≡ 1

2
εµναβRτ

σαβ , where

ε0123 ≡ 1/
√−g. The second term in Eq. (34) is called a Chern–Pontryagin term

and connected to the CS term, via partial integration,

ICS = − ℓ

32π

∫

d4x
√−g(∂µϑ)ε

µαβγ

(

Γσ
ατ∂βΓ

τ
γσ +

2

3
Γσ
ατΓ

τ
βηΓ

η
γσ

)

. (35)

Thus nontrivial ∂µϑ leads to the CS modification. In this paper, we neglect the

problem concerning the surface integral term (see Ref. 32 for the serious treatment).
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When we neglect the kinematic term and the potential term of ϑ in Eq. (34), the

action reduces to that of the Jackiw–Pi model.6 From the variations in the action

with respect to the metric gµν and the scalar field ϑ, we obtain the field equations,

respectively,

Gµν + ℓCµν = −8π(T µν
m + T µν

ϑ ) , (36)

gµν∇µ∇νϑ =
dV (ϑ)

dϑ
− ℓ

64π
∗Rτ µν

σ Rσ
τµν , (37)

where Gµν is the Einstein tensor, Cµν is the Cotton tensor defined by

Cµν ≡ −1

2
[(∇σϑ)(ε

σµαβ∇αR
ν
β + εσναβ∇αR

µ
β) + (∇σ∇τϑ)(

∗Rτµσν + ∗Rτνσµ)] ,

(38)

T µν
m is the energy–momentum tensor for matter, and T µν

ϑ is the energy–

momentum tensor of the scalar field,

T µν
ϑ = (∇µϑ)(∇νϑ)− gµν

[

1

2
(∇λϑ)(∇λϑ) + V (ϑ)

]

. (39)

Thus Eqs. (36) and (37) are basic equations in the CS modified gravity.

3.2. Basic equations for fluid flow

We obtain basic equations for fluid motion under the CS modified gravity from the

covariant divergence of Eq. (36),

∇νT
µν

m = − ℓ

8π
∇νC

µν −∇νT
µν

ϑ ≡ Θµ , (40)

where Θµ is defined as force exerted on the ordinary matter. We can regard Θµ as

a CS correction. Using Eq. (39) and the equality6

∇νC
µν =

1

8
(∇µϑ)∗Rσ νλ

τ Rτ
σνλ , (41)

we obtain

Θµ(ϑ) = (∇νϑ)(∇µ∇ν −∇ν∇µ)ϑ . (42)

Thus we find that Θµ vanishes when the scalar field is regular everywhere. Then

we derive the usual equation of motion for matter, ∇νT
µν

m = 0. In this case, the

motion of fluid is affected only through the change of the metric. When we consider

a test particle, we derive the usual geodesic equation from ∇νT
µν

m = 0, which is

independent of the mass. This fact means that the equivalence principle is valid for

regular ϑ under the CS modified gravity. On the other hand, if there is a singularity

in ϑ, Θµ would not vanish at the singularity. For example, if ϑ = arctan(y/x) ≡ φ

in rectangular Cartesian coordinates, we derive

Θµ =

(

0,
2πx

x2 + y2
δ(x)δ(y),

2πy

x2 + y2
δ(x)δ(y), 0

)

, (43)
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where we have used the formula33

(∂x∂y − ∂y∂x)φ = 2πδ(x)δ(y) . (44)

Here, δ(x) denotes the Dirac’s delta function. Therefore, when such a topological

singularity exists, the force term Θµ plays an important role at the singularity.

Hereafter, we take account of the effect of the CS correction Θµ on fluid motion.

We now assume perfect fluid again. Equation (40) can be divided into two parts,

i.e. the component parallel to uµ and the components orthogonal to uµ. The former

gives the balance equation, i.e. the continuity equation with a source term,

(ρuµ);µ + puµ
;µ = −uµΘ

µ , (45)

where a semicolon denotes the covariant derivative. The latter gives the equation

of motion

(ρ+ p)uνuµ
;ν + Pµνp,ν = Pµ

νΘ
ν , (46)

where Pµν is the projection tensor onto the hypersurface orthogonal to uµ. Using

the variables s and h, we can write Eqs. (45) and (46), respectively, as

(suµ);µ = −S , (47)

uνuµ
;ν + Pµν(lnh),ν = Vµ , (48)

where the CS corrections S and Vµ are defined by

S ≡ s

ρ+ p
uµΘ

µ , (49)

Vµ ≡ 1

ρ+ p
Pµ

νΘ
ν . (50)

The balance equation (47) and the equation of motion (48) govern fluid dynamics

under the CS modified gravity.

From Eq. (48), we also obtain the differential equation for vorticity ωµ as

(

hωµ

s

)

;ν

uν

h
− hων

s

(

uµ

h

)

;ν

=
1

s2
Sωµ +

1

s
[Vνω

νuµ + ∗Wµνuν ] , (51)

where

∗Wµν ≡ 1

2
εµνλσVλ;σ . (52)

Here ∗Wµν is regarded as the rotational component of the force Vµ. Thus, Eq. (51)

governs the time evolution of vorticity in fluid motion under the CS modified gravity.
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3.3. Lagrangian description of fluid flow

We discuss fluid motion from the viewpoint of the Lagrangian description.

We deal with the balance equation (47). Applying the Lagrangian condition (21)

to Eq. (47), we derive

(√
−gs

)

,0
= −

√
−gS . (53)

Thus we obtain

s(τ,x) =

√

g(τ0,x)

g(τ,x)
s(τ0,x)−

1
√

−g(τ,x)

∫ τ

τ0

dτ ′
√−gS . (54)

When the pressure vanishes, Eq. (54) reduces to

ρ(τ,x) =

√

g(τ0,x)

g(τ,x)
ρ(τ0,x)−

1
√

−g(τ,x)

∫ τ

τ0

dτ ′
√−gS . (55)

From Eqs. (54) and (55), we see that if the CS correction S vanishes, the entropy

density
√−gs or the energy density

√−gρ is conserved in the Lagrangian coordi-

nates. However, if the CS correction S does not vanish,
√−gs and

√−gρ are no

longer conserved. The function S provides a source of entropy or energy as seen

in Eqs. (54) and (55). Thus in general, the creation of entropy or energy may oc-

cur when there is a topological singularity in the scalar field appearing in the CS

modified gravity.

Next we discuss the vorticity equation (51) using the Lagrangian condition (21).

As mentioned above, the temporal component of ωµ is not independent of the spatial

components because ω0 = g0iω
i. Hence we focus on the spatial components of ωµ

again. The spatial components of Eq. (51) give

(

hωi

s

)

,0

=
h

s2
Sωi +

h

s
∗W iνuν . (56)

Then we obtain

h(τ,x)ωi(τ,x) =
s(τ,x)

s(τ0,x)
h(τ0,x)ω

i(τ0,x) + s(τ,x)

∫ τ

τ0

dτ ′
(

h

s2
Sωi +

h

s
∗W iνuν

)

.

(57)

When the pressure vanishes, Eq. (57) reduces to

ωi(τ,x) =
ρ(τ,x)

ρ(τ0,x)
ωi(τ0,x) + ρ(τ,x)

∫ τ

τ0

dτ ′
(

1

ρ2
Sωi +

1

ρ
∗W iνuν

)

. (58)

From Eqs. (57) and (58), we see that if the CS corrections S and ∗W i0 vanish,

hωi/s or ωi/ρ is conserved in the Lagrangian coordinates. However, if S 6= 0 or
∗W iν 6= 0, hωi/s or ωi/ρ is no longer conserved. In particular, the second terms

of the integrands in Eqs. (57) and (58) may produce vorticity, regardless of the
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values of vorticity vector. Therefore, even if the vorticity vanishes everywhere at

the initial time, circulation may be created when there is a topological singularity

in the scalar field of the CS modified gravity.

4. Summary

We have considered fluid flow under the CS modified Maxwell theory and under the

CS modified gravity theory. We investigated the effects of the CS corrections on con-

served quantities of relativistic fluid. First of all, we obtained the CS corrections to

the equations for fluid, i.e. the continuity equation, the equation of motion and the

vorticity equation. For the discussion of vorticity, we introduced the four-vorticity

in Eq. (16). We also pointed out that the four-vorticity provides the expressions

of both three-vorticity and fluid helicity density in the nonrelativistic limit. This

fact means that the four-vorticity unifies the physical pictures of circulation and

fluid helicity in a relativistic framework. To discuss conserved quantities of fluid,

we utilized the Lagrangian description of fluid flow. In the CS modified Maxwell

theory, we found that while the entropy or energy is conserved, the circulation and

fluid helicity are not generally conserved. We also found that the conservation of

the magnetic helicity holds even in the CS modified Maxwell theory, while the con-

servation of the cross helicity does not hold in general. In the CS modified gravity,

when the CS scalar field is regular everywhere, the CS corrections do not appear

in the equations for fluid flow. In this case, we have the validity of the equivalence

principle. This fact means that for a regular CS scalar field, we cannot find the CS

correction directly from the test of equivalence principle. Furthermore, we found

that when there is a topological singularity in the CS scalar field, not only the

circulation and fluid helicity but also the entropy and energy are not conserved in

general at the singularity.
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