(12) 公 開 特 許 公 報(A)

(19) 日本国特許庁(JP)

(11) 特許出願公開番号 特開2005-308653

(P2005-308653A)

(43) 公開日 平成17年11月4日 (2005.11.4)

(51) Int.C1. ⁷	F I		テーマコード (参考)
GO1N 13/10	GO1N 13/10	Н	

審査請求 未請求 請求項の数 6 OL (全 11 頁)

(21) 出願番号 (22) 出願日	特願2004-128772 (P2004-128772) 平成16年4月23日 (2004.4.23)	(71) 出願人	503360115 独立行政法人科学技術振興機構 埼玉県川口市本町4丁目1番8号
		(74)代理人	100120640
			弁理士 森 幸一
		(72)発明者	丹田 聡
			北海道札幌市白石区東札幌2条3丁目5-
			20
		(72)発明者	稲垣 克彦
			北海道札幌市北区新琴似7条3丁目1-3
			2 - 102
		(72)発明者	大河裕之
			北海道札幌市北区北22条西8丁目1-2
			8-308
			最終頁に続く

(54) 【発明の名称】電荷密度波量子位相顕微鏡及び電荷密度波量子干渉計

(57)【要約】

【課題】 電荷密度波の巨視的量子位相情報を積極的 に活用した電荷密度波量子位相顕微鏡及び電荷密度波量 子干渉計を提供する。

【解決手段】 電荷密度波結晶からなる探針12を用 いて電荷密度波量子位相顕微鏡を構成する。この探針1 2を試料に接触させたときのその電荷密度波結晶のしき い電場の変化を狭帯域信号(NBS)の振動数を測定す ることにより測定する。また、電荷密度波結晶からなる 針状結晶を用いて電荷密度波量子干渉計を構成する。針 状結晶の側面にゲート電圧を印加したときの電荷密度波 結晶のしきい電場の変化を狭帯域信号の振動数を測定す ることにより測定する。

【選択図】 図2

(2)

【特許請求の範囲】

【請求項1】

電荷密度波結晶からなる探針を用いたことを特徴とする電荷密度波量子位相顕微鏡。 【請求項2】

上記探針を試料に接触させたときの上記電荷密度波結晶のしきい電場の変化を狭帯域信号の振動数を測定することにより測定することを特徴とする請求項1記載の電荷密度波量子位相顕微鏡。

【 請 求 項 3 】

電荷密度波結晶からなる針状結晶を用いたことを特徴とする電荷密度波量子干渉計。

【請求項4】

上記針状結晶の側面にゲート電圧を印加したときの上記電荷密度波結晶のしきい電場の 変化を狭帯域信号の振動数を測定することにより測定することを特徴とする請求項3記載 の電荷密度波量子干渉計。

【請求項5】

上記電荷密度波結晶がMX_p (ただし、MはTa及びNbからなる群より選ばれた少な くとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一種の元素 、1.8 p 2.2)、MX_q (ただし、MはTa及びNbからなる群より選ばれた少 なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一種の元 素、2.7 q 3.3)またはMX_r (ただし、MはTa及びNbからなる群より選ば れた少なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一 種の元素、3.6 r 4.4)からなることを特徴とする請求項1または2記載の電荷 密度波量子位相顕微鏡。

【請求項6】

上記電荷密度波結晶がMX_p (ただし、MはTa及びNbからなる群より選ばれた少な くとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一種の元素 、1.8 p 2.2)、MX_q (ただし、MはTa及びNbからなる群より選ばれた少 なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一種の元 素、2.7 q 3.3)またはMX_r (ただし、MはTa及びNbからなる群より選ば れた少なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一 種の元素、3.6 r 4.4)からなることを特徴とする請求項3または4記載の電荷 密度波量子干渉計。

30

10

20

密度 波 重 丁 干 沙 訂 。 【 発 明 の 詳 細 な 説 明 】

【技術分野】

[0001]

この発明は、電荷密度波量子位相顕微鏡及び電荷密度波量子干渉計に関し、例えば、電 荷密度波ナノ構造体を用いた新規なデバイスの作製や生体高分子の構造決定などに用いて 好適なものである。

【背景技術】

[0002]

金属などの導体中の伝導電子が巨視的な量子コヒーレント状態になるのは、超伝導、電 40 荷密度波(CDW)、量子ホール液体の3例しかない。外部からの操作なしでは前2者で あるといっても過言ではない。特に、CDW体は室温で相転移を示すので、実用上、CD W巨視的量子位相を利用した素子並びに計測デバイスが半導体テクノロジーを超える潜在 性を有しており注目されている。最近、こうした背景の下、CDW3端子電界・電流駆動 素子、フェムト秒領域のメモリ素子などが考案され、それぞれ新しい量子機能素子として 新たな効果が実証されている(例えば、非特許文献1)。 【非特許文献1】App1. Phys. Lett. 80, 871(2002)

【発明の開示】

【発明が解決しようとする課題】

[0003]

CDWナノ構造体を用いたデバイスの作製にはその評価を行うためのツールが不可欠と 考えられるが、本発明者らの知る限り、これまで、有効なツールについての具体的な提案 は何らなされていないのが実情である。

(3)

そこで、この発明が解決しようとする課題は、電荷密度波の巨視的量子位相情報を積極的に活用することで電荷密度波ナノ構造体の解析や生体高分子の構造の決定などを高精度 で行うことができ、しかも小型に構成することができる電荷密度波量子位相顕微鏡を提供 することにある。

この発明が解決しようとする他の課題は、電荷密度波の巨視的量子位相情報を積極的に 活用することで局所的な電場を高精度で測定することができる電荷密度波量子干渉計を提 供することにある。

【課題を解決するための手段】

[0004]

本発明者らは、上記課題を解決するために、理論的に設計されたCDWナノ構造体を積極的に物質科学の立場から創製し、これらの物質が外部刺激を受けた際に生ずる電気・弾性・光学的性質の変化を明らかにしながら応用への展開を図ることを考えた。特に、CDWの巨視的量子位相情報を積極的に活用し、小型で高性能な顕微鏡の開発を目指すこととした。これは、CDWナノ構造体を用いたデバイスの作製に不可欠なツールであるばかりでなく、DNAに代表される生体高分子の構造決定や量子位相情報を用いた量子コンピューターの開発などに大きな発展をもたらすものとなり得る。 【0005】

─ 方、 CDWは不純物や試料端の影響でピン止めされているが、 しきい電場以上の電場 を印加するとスライディングを起こし、電気伝導に寄与する。このCDWのスライディン グは電子の集団的な並進運動であり、低次元導体に特徴的な現象である。CDWがピン止 めポテンシャル中をスライディングすることにより、CDWの運ぶ直流電流成分に比例し た振動数の交流電流、すなわち狭帯域信号(narrow band signal:NBS)(狭帯域雑音 (narrow band noise :NBN)とも呼ばれる)が生ずる。すなわち、しきい電場以上の 電場を印加したときに流れる過剰電流部分をJ_{cpw}、上記のNBSの振動数を _{NBS}とす J_{CDW} である。よって、しきい電場の変化はこのNBSの振動数 _{NBS} を ると、 NBS 測定することにより高精度で測定することが可能である。このしきい電場はCDW結晶に 生ずるわずかな応力によって変化するので、CDWの針に電極を付けてNBSを測定する だ け で 、 原 子 間 力 顕 微 鏡 (A F M) を 越 え る 機 能 を 持 つ 高 精 度 な 顕 微 鏡 を 作 る こ と が で き る。 例 え ば 、 長 さ が 1 0 0 n m の 針 状 C D W 結 晶 を 用 い れ ば 、 周 波 数 計 の 感 度 が 1 H z と して、1pmの分解能を持つ顕微鏡の実現が可能である。また、例えばAFMにおいてカ ンチレバーの探針の変位はカンチレバーにレーザー光を照射することにより検出している が、このCDW顕微鏡では、そのような光学系が不要となるため、非常に小型の構成とす ることができる。このため、例えば、注射針のように生体に直接導入できるという大きな 利点を持つ。

[0006]

また、高純度で微小なCDW針状結晶では、試料の両端でのピン止め力が強め合うか弱 め合うかは、CDWの波長 _{CDW} と試料の長さとの兼ね合いで決まる。CDW針状結晶へ のゲート電圧の印加による波長 _{CDW} の変化とともにしきい電場は振動する。これは超伝 導量子干渉計(SQUID)とまったく同様な振る舞いであり、電圧を測定する一種の量 子干渉計となる。このしきい電場の変化をNBSの測定によって検出することにより、局 所的な電場(電荷)を測定する高精度な顕微鏡を作ることが可能である。

この発明は、上記の検討に基づいて案出されたものである。

すなわち、上記課題を解決するために、第1の発明は、

電荷密度波結晶からなる探針を用いたことを特徴とする電荷密度波量子位相顕微鏡である。

この第1の発明では、典型的には、電荷密度波結晶からなる探針を試料に接触させたと 50

10

20

30

きのその電荷密度波結晶のしきい電場の変化を狭帯域信号(NBS)の振動数を測定する ことにより測定する。

あるいは、探針を試料に接近させたときにそれらの間に生ずる電荷密度波トンネリング を利用して試料の電荷密度波状態を測定することもできる。

 $\begin{bmatrix} 0 & 0 & 0 & 8 \end{bmatrix}$

第2の発明は、

電荷密度波結晶からなる針状結晶を用いたことを特徴とする電荷密度波量子干渉計である。

この第2の発明では、典型的には、針状結晶の側面にゲート電圧を印加したときの電荷 密度波結晶のしきい電場の変化を狭帯域信号の振動数を測定することにより測定する。 【0009】

第1及び第2の発明において、電荷密度波結晶としては、基本的にはどのようなものを 用いてもよいが、好適には、MXp(ただし、MはTa及びNbからなる群より選ばれた 少なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一種の 元素、1.8 p 2.2)、MXq(ただし、MはTa及びNbからなる群より選ばれ た少なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくとも一種 の元素、2.7 q 3.3)またはMXr(ただし、MはTa及びNbからなる群より 選ばれた少なくとも一種の元素、XはS、Se及びTeからなる群より選ばれた少なくと も一種の元素、3.6 r 4.4)からなるものが用いられる。MXpの具体例を挙げ るとTaSe2やTaS2、MXqの具体例を挙げるとNbSe3、MXrの 具体例を挙げるとNbTe4 などである。

電荷密度波結晶は、典型的には針状結晶からなる。電荷密度波結晶あるいは針状結晶に は、ナノチューブのような管状晶も含まれ、また、単結晶だけでなく、多結晶であっても よい。

【 0 0 1 0 】

上述のように構成された第1の発明においては、電荷密度波結晶からなる探針を試料の 表面に接触させたとき、探針に応力が生ずることによる電荷密度波のしきい電場の変化を 狭帯域信号の振動数を測定することにより高精度で測定することができる。あるいは、探 針を試料の表面に接近させたとき、それらの間に生ずる電荷密度波トンネリングを利用し て試料の電荷密度波状態を測定することができる。また、AFMで必要な探針の変位の検 出のための光学系が不要である。

また、第2の発明においては、電荷密度波結晶からなる針状結晶にゲート電圧を印加したときに生ずる電荷密度波のしきい電場の変化を狭帯域信号の振動数を測定することにより高精度で測定することができる。

【発明の効果】

【0011】

この発明によれば、電荷密度波の巨視的量子位相情報を積極的に活用することで電荷密 度波ナノ構造体の解析や生体高分子の構造の決定などを高精度で行うことができ、しかも 小型に構成することができる電荷密度波量子位相顕微鏡を実現することができる。

また、この発明によれば、電荷密度波の巨視的量子位相情報を積極的に活用することで 局所的な電場を高精度で測定することができる電荷密度波量子干渉計を実現することがで きる。

【発明を実施するための最良の形態】

以下、この発明の実施形態について図面を参照しながら説明する。

図1はこの発明の第1の実施形態によるCDW量子位相顕微鏡を示す。

図1に示すように、このCDW量子位相顕微鏡においては、一般的な走査プローブ顕微鏡と同様な圧電制御装置11の下部にCDW針状結晶からなる探針12が取り付けられており、圧電制御装置11によりこの探針12を×、y、z方向に三次元的に走査することができるようになっている。図2に示すように、探針12には電極13、14が設けられ

10

20

30

40

ており、これらの電極13、14の間に電源15及び周波数計16を含む外部回路が接続 されている。そして、周波数計16により、NBSの振動数を測定し、それによってしき い電場の変化を測定することができるようになっている。

【 0 0 1 3 】

次に、この C D W 量子位相顕微鏡の使用方法を説明する。ここでは、一例として C D W ナノ構造体からなる試料を用いる場合を考える。

図1に示すように、CDWナノ構造体からなる試料17の表面に探針12を接触させ、 走査する。探針12が試料17の表面に接触すると、探針12の先端が変位し、それによって探針12に応力が生ずる。この応力により、探針12のしきい電場が変化し、それにより探針12を流れるNBSの振動数が変化する。そして、このNBSの振動数の変化が 表面像に変換される。表面像への変換、言い換えると物体の表面形状等の可視化には、例 えば、周波数 - 電圧(電流)変換器の出力の可視化、あるいはフィードバックを構成する 制御信号の可視化がある。

【0014】

もう一つの使用方法を説明する。

図 3 に、 試料 1 7 の C D W 状態におけるイオンの配置及び C D W (電荷密度 (×)) と探針 1 2 のイオンの配置及び C D W とを示す。 (×)は次式で表される。

 $(x) = _{0} + _{1} \cos (Qx +)$

ただし、 x は 1 次元軸方向の空間座標、 1 は電荷密度波の振幅、 Q は波数ベクトル(ネ スティングベクトル)で Q = 2 k_F (k_F はフェルミ波数)、 ₀ = - e n e (n e は電 20 子の密度)、 は位相を示す。

【 0 0 1 5 】

探針12と試料17との接触点において、探針12の先端のCDWの位相を _p、試料 17の表面のCDWの位相を _sとすると、 _p - _s V_{th}が成立する。ただし、V_{th} はしきい電場に対応する電圧(しきい電圧)である。探針12の先端が、走査に伴い変位 すると、それに伴って _sが変化し、これが _p - _sの変化をもたらしてV_{th}、従って しきい電場が変化することとなる。そして、これがNBSの振動数の変化として測定され る。

[0016]

さらにもう一つの使用方法を説明する。これはCDWトンネリングを利用するものであ 30 る。

CDWナノ構造体からなる試料17の表面に探針12を接近させ、走査する。探針12の先端のCDWの位相を _p、試料17の表面のCDWの位相を _sとする。探針12の先端が、走査に伴い変位すると、それに伴って _sが変化し、これが _p - _sの変化をもたらし、探針12と試料17との間に流れるトンネリング電流が変化する。そして、この電流あるいは電圧の変化が表面像に変換される。

【 0 0 1 7 】

次に、CDW針状結晶からなる探針12の作製方法について説明する。

まず、図4Aに示すように、円錐体21を作製する。この円錐体21は、後述の電子ビームの照射によりCDW結晶を成長させる際に加熱されて軟化しない程度の融点、例えば 40 800 以上の融点を有するものであれば、基本的にはどのような材料からなるものでも よいが、具体的には、例えばSi、Si₃N₄、SiO₂、ダイヤモンド、アルミナ(サ ファイヤ)、TaS₂、GaAs、Ni、Taなどを用いることができる。 【0018】

次に、図4Bに示すように、真空中において、この円錐体21の表面に、成長させよう とするCDW結晶の原料膜22を形成する。この原料膜22としては、例えばCDW結晶 としてTaSe2を用いる場合には、Ta膜及びSe膜からなる二層膜を用いるほか、T aSe2 膜そのものであってもよい。この原料膜22は、例えば真空蒸着法、スパッタリ ング法、化学気相成長(CVD)法、有機金属化学気相成長(MOCVD)法、分子線エ ピタキシー(MBE)法などの成膜法のいずれか、またはこれらを適宜組み合わせて形成

することができる。

【 0 0 1 9 】

次に、図4Cに示すように、こうして原料膜22を形成した円錐体21の先端部からその側面に沿って所定距離L、例えば1~3µm程度離れた点Pを目掛けて電子ビーム23 を室温で照射する。この電子ビーム23のスポットサイズは、例えば50nm~1µm程 度とする。このとき、図4Dに示すように、この電子ビーム23の照射部位ではなく、円 錐体21の先端部近傍にCDW針状結晶24が成長する。電子ビーム23の照射時には一 般に、電子ビーム23の照射部位とCDW針状結晶24の成長部位との間に、先端部を低 温側として10~100 /µmの温度勾配が存在する。この場合、電子ビーム23の照 射部位の温度はCDW針状結晶24の成長温度よりも高いが、CDW針状結晶24の成長 部位はより温度が低くなって成長に最も適した温度になっている。このCDW針状結晶2 4の成長は、固相エピタキシャル成長によるものと考えられる。このCDW針状結晶24 の太さ(径)は例えば5nm~1µm程度、長さは例えば10nm~2µm、あるいは1 0~500nmであり、アスペクト比(長さ/太さ)は一般的には100以下である。 【実施例】

(6)

[0020]

S i からなる円錐体 2 1 の表面に T a 膜及び S e 膜を真空蒸着法により順次形成した後、これらの T a 膜及び S e 膜からなる原料膜 2 2 が形成された円錐体 2 1 の先端部からその側面に沿って L = 2 µ m離れた部位に電子ビーム 2 3 を照射した。 T a 膜の厚さは 1 0 0 n m、 S e 膜の厚さは 2 0 0 n m とした。電子ビーム 2 3 のスポットサイズは 1 µ m、加速電圧は 2 5 k V、照射電流量は 1 × 1 0⁻⁷ µ A、照射時間は 3 0 分とした。また、電子ビーム 2 3 の照射は 3 ~ 4 × 1 0⁻⁶ T o r r の圧力の真空中で行った。その結果、先端部から約 0 . 5 µ m離れた部位に直径約 0 . 4 µ mの T a S e 2 針状結晶が約 1 . 5 µ m の長さに成長した。その走査型電子顕微鏡(SEM)写真を図 5 に示す。この場合、電子ビーム 2 3 の照射部位の円錐体 2 1 の温度は 8 0 0 ~ 8 5 0 程度、成長部位の温度は 6 0 0 ~ 7 0 0 程度と考えられる。

この T a S e 2 針状結晶を探針 1 2 に用いて T a S e 2 試料の表面を走査したところ、 図 6 に示すような良好な原子像が得られた。

次に、この T a S e 2 針状結晶に電極 1 3 、 1 4 を形成したものを探針 1 2 に用いた C D W 量子位相顕微鏡により T a S e 2 試料の表面を走査したところ、図 7 に示すような C D W 像が得られた。

【0021】

以上のように、この第1の実施形態によれば、CDWの巨視的量子位相情報を積極的に 活用したCDW量子位相顕微鏡を実現することができる。このCDW量子位相顕微鏡は、 AFMを越える機能を持つ高精度な顕微鏡である。例えば、探針12として長さが100 nmのものを用いれば、周波数計16の感度が1Hzであるとして、1pmの分解能を得 ることができる。また、このCDW量子位相顕微鏡はAFMなどと異なり光学系が不要な ため、その分だけ小型に構成することができるという利点がある。

[0022]

次に、この発明の第2の実施形態によるCDW量子位相顕微鏡について説明する。 図8に示すように、このCDW量子位相顕微鏡においては、カンチレバー31の先端下 部にSiなどからなる探針32が取り付けられている。カンチレバー31の他端は圧電制 御装置(図示せず)に取り付けられている。カンチレバー31の上に、CDW針状結晶3 3が一体的に設けられている。このCDW針状結晶33の両端には電極34、35が設け られており、これらの電極34、35の間に電源36及び周波数計37を含む外部回路が 接続されている。そして、周波数計37により、NBSの振動数を測定し、それによって しきい電場の変化を測定することができるようになっている。

【0023】

次に、このCDW量子位相顕微鏡の使用方法を説明する。ここでは、一例としてCDWナノ構造体からなる試料を用いる場合を考える。

10

50

図8に示すように、CDWナノ構造体からなる試料17の表面に探針32を接触させ、 走査する。探針32が試料17の表面に接触すると、探針32の先端が変位し、それに伴 ってカンチレバー31の先端が変位し、それによってカンチレバー31上のCDW針状結 晶33が伸縮して応力が生ずる。この応力により、CDW針状結晶32のしきい電場が変 化し、それによりCDW針状結晶32を流れるNBSの振動数が変化する。そして、この NBSの振動数の変化が表面像に変換される。

上記以外のことは第1の実施形態と同様である。

この第2の実施形態によれば、第1の実施形態と同様な利点を得ることができる。 【0024】

次に、この発明の第3の実施形態によるCDW量子干渉計について説明する。このCD 10 W量子干渉計を図9に示す。

図9に示すように、このCDW量子干渉計においては、CDW針状結晶41の両端に電極42、43が設けられており、これらの電極42、43の間に電源44及び周波数計4 5を含む外部回路が接続されている。CDW針状結晶41の中央部側面にはゲート電極4 6が設けられており、このゲート電極46によりCDW針状結晶41の側面にゲート電圧 を印加することができるようになっている。そして、周波数計45によりNBSの振動数 を測定し、それによってしきい電場の変化を測定することができるようになっている。 【0025】

このCDW量子干渉計の使用方法を説明する。

高純度で微小なCDW針状結晶41では、両端でのピン止め力が強め合うか弱め合うか は、CDWの波長_{CDW} とCDW針状結晶41の長さとの兼ね合いで決まる。CDW針状 結晶41の電極42側の一端におけるCDWの位相を₁、電極43側の他端におけるC DWの位相を₂とする。CDW針状結晶41にゲート電極46によりゲート電圧V_gが 印加されると、CDWの波長_{CDW} が変化し、それによって₁ - 2の値が変化し(V ₉1 - 2)、それとともにしきい電圧V_{th}、従ってしきい電場が変化する。ここで、

 $V_{th} = 2 V_0 | cos (C_q V_q / 2 e) |$

である。ただし、 V 。は定数、 C 。はゲート容量、 e は電荷素量である。このしきい電場の変化を N B S の振動数を測定することによって検出することにより、局所的な電場を測定することができる。

この第3の実施形態によれば、CDWの巨視的量子位相情報を積極的に活用したCDW 量子干渉計を実現することができる。このCDW量子干渉計によれば、局所的な電場を高 精度で測定することができる。

【0026】

以上、この発明の実施形態及び実施例について具体的に説明したが、この発明は、上述の実施形態及び実施例に限定されるものではなく、この発明の技術的思想に基づく各種の 変形が可能である。

例えば、上述の実施形態及び実施例において挙げた数値、構成、材料、原料、プロセス などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構成、材料、原料、プ ロセスなどを用いてもよい。

【0027】

また、電子ビーム23の代わりに、レーザービームやイオンビームなどの他のエネルギ ービームを用いてもよい。また、電子ビーム23の照射前に原料膜22をあらかじめ形成 しておくのではなく、成長原料を供給しながら電子ビーム23を照射することにより成長 を行うようにしてもよい。さらに、一部の原料膜を形成した状態で他の成長原料を供給し ながら電子ビーム23を照射することにより成長を行うようにしてもよい。

【図面の簡単な説明】

【0028】

【図1】この発明の第1の実施形態によるCDW量子位相顕微鏡を示す略線図である。 【図2】この発明の第1の実施形態によるCDW量子位相顕微鏡において用いられる探針

30

を示す略線図である。

【図3】この発明の第1の実施形態によるCDW量子位相顕微鏡による測定原理を説明するための略線図である。

【図4】この発明の第1の実施形態によるCDW量子位相顕微鏡において用いられる探針の作製方法を説明するための略線図である。

【図5】この発明の第1の実施形態によるCDW量子位相顕微鏡において用いられる探針の作製方法により作製された探針を示す図面代用写真である。

【図6】この発明の第1の実施形態によるCDW量子位相顕微鏡により得られた原子像を 示す図面代用写真である。

【図7】この発明の第1の実施形態によるCDW量子位相顕微鏡により得られたCDW像 10 を示す図面代用写真である。

- 【図8】この発明の第2の実施形態によるCDW量子位相顕微鏡を示す略線図である。
- 【図9】この発明の第3の実施形態によるCDW量子干渉計を示す略線図である。
- 【符号の説明】
- 【0029】

1 1 … 圧電制御装置、1 2 … 探針、1 6 、 3 7 、 4 5 … 周波数計、1 7 … 試料、2 1 … 円錐体、2 2 … 原料膜、2 3 …電子ビーム、2 4 、 3 3 、 4 1 … C D W 針状結晶

A

в

8001 25KV X6,500 14m WD13

フロントページの続き

(72)発明者 西田 宗弘 北海道札幌市北区北13条西8丁目 北海道大学大学院工学研究科内