J. Phys. IV France **131** (2005) 235–237 © EDP Sciences, Les Ulis DOI: 10.1051/jp4:2005131060

Imaging of NbSe₂ nanotube by STM

K. Ichimura¹, K. Tamura¹, M. Ogata¹, K. Nomura¹, T. Toshima² and S. Tanda²

¹ Division of Physics, Hokkaido University, Sapporo 060-0810, Japan

² Division of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

Abstract. NbSe₂ nanotubes were studied by scanning tunneling microscopy (STM). Topographic images of NbSe₂ nanotubes on the substrate of HOPG were taken at room temperature. The length of nanotubes is estimated as 300-2000 nm. Diameter of nanotubes is found to be several nm, which is much smaller than that of multi-walled nanotubes, suggesting single-walled one. The bundle structure, which consists of several ten nanotubes, and Y-junction were found similarly to carbon nanotubes.

1. INTRODUCTION

Nanotube materials as well as carbon nanotube have attracted much attention because of their topological structure. The electronic state can be controlled by the chirality. Recently, NbSe₂ nanotube was synthesized independently by two groups [1, 2]. Tsuneta *et al.* [1] reported that the nanotube is multi-walled and the stacking is determined as 2H from electron diffraction. On the other hand, the nanotube synthesized by Nath *et al.* [2] has 6Ha stacking. It should be emphasized that NbSe₂ nanotube is the first nanotube material, of which bulk phase exhibits the condensed state. The bulk phase of 2H-NbSe₂ undergoes the incommensurate charge density wave (CDW) at 33 K, and moreover, the superconductivity at 7.2 K. Our interest is how the condensed state, which is characterized with the coherence length, survives in nano-scaled electronic system.

The tunneling spectroscopy using STM, *i.e.* scanning tunneling spectroscopy (STS) is useful method to investigate the condensed state such as the superconductivity, charge and spin density wave because of non-contacting tip configuration.

The goal of our study is elucidating the ground state of nano-scaled topological material by STS at low temperature. As the first state of our study on NbSe₂ nanotube, in this paper, we report STM images of NbSe₂ nanotubes at room temperature and discuss about the diameter of tubes.

2. EXPERIMENTAL

NbSe₂ nanotubes were synthesized by the chemical vapor transport (CVT) method. After purifying, the nanotube sample for STM measurement was prepared by dropping NbSe₂ nanotubes agitated ultrasonically in 2-propanol on cleaved highly oriented pyrolytic graphite (HOPG). We used low temperature STM equipment, in which temperature is variable from room temperature down to 1.2 K. A mechanically sharpened Pt-Ir alloy wire was used as an STM tip, which is attached to a tube type piezoelectric scanner.

3. RESULTS AND DISCUSSION

Figure 1 shows a typical STM image of NbSe₂ nanotube on HOPG substrate. The fiber-like structures are almost straight and have length of about 300-2000 nm. We conclude that the linear structure corresponds to NbSe₂ nanotube from dimension and linearity of the structure. At present, we cannot obtain the atomic resolution to determine the chirality of nanotubes. The scan profile across the linear structure, which

JOURNAL DE PHYSIQUE IV

shows a peak, suggests that the structure is nanotube. Diameter of NbSe₂ nanotubes observed at present work is ranging from 1 to 20 nm. In much case, the tube diameter is distributed from 4 to 10 nm. The obtained value in the present work is much smaller than that reported by TEM study [1] on multi-walled NbSe₂ nanotubes. We speculate that thick tube in the present STM study is multi-walled and thin nanotube is rather single-walled. The present result of diameter of several nm is almost consistent with the theoretical calculation [3] for single-walled NbSe₂ nanotubes.

The bundle structure of NbSe₂ nanotube was found similarity to carbon nanotube as shown in Fig. 2. The bundle with diameter of about 70 nm consists of several ten nanotubes with diameter of a few nm, which are spaced closely and arranged in parallel. It is noteworthy that NbSe₂ nanotube has much similarity with carbon nanotube in structure.

We also note the Y-junction of NbSe₂ nanotube. The Y-junction was often found in carbon nanotubes [4]. The Y-junction of NbSe₂ nanotube suggests the possibility of an application to nano-scaled devices in the CDW and superconducting state.

We are interested in the CDW and superconductivity in nano-sized sample. We are trying to study STS on NbSe₂ nanotubes at low temperature.

Figure 2. (right) STM image of bundle structure of NbSe₂ nanotbes. Scanarea is 87.4×87.4 nm².

Acknowledgments

This work has been partially supported by the 21COE program on "Topological Science and Technology" from the Ministry of Education, Culture, Sport, Science and Technology of Japan.

References

- [1] T. Tsuneta, T. Toshima, K. Inagaki, T. Shibayama, S. Tanda, S. Uji, M. Ahlskog, P. Hakonen, M. Paalanen, Curr. Appl. Phys. **3**, 473 (2003).
- [2] M. Nath, S. Kar, A. K. Raychaudhuri, C. N. R. Rao, Chem. Phys. Lett. 368, 690 (2003).
- [3] V.V. Ivanovskaya, A.N. Enyashin, N.I. Medvedeva, A. L. Ivanovskii, Phys. Stat. Sol. B238, R1 (2003).
- [4] L.P. Biro, Z.E. Horvath, G.I. Mark, Z. Osvath, A.A. Koos, A.M. Benito, W. Maser, Ph. Lambinc, Diamond Relat. Mater. **13**, 241 (2004).