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’ INTRODUCTION

Recently, there has been increasing interest in loop nanos-
tructures and microstructures.1�3 Theoretical and experimental
attention has been paid to crystals of these structures.4�7

Topological crystals were discovered in 20008 and have been
researched since then. First, a NbSe3 ring crystal was synthesized
together with whisker crystals. Next, other topological crystals
(M€obius-strip-, figure-eight-, and Hopf-link-shaped crystals)
were discovered,9,10 and then topological crystals of other
compounds (TaSe3,

11 TaS3,
12 and NbS3

13) were discovered.
Crystal topology broke through a new stage of understanding of
physical phenomena.12,14,15

Topological crystals are conceptually different from conven-
tional crystals. A crystal is constructed by the infinite repetition of
atoms, as shown in Figure 1 (left). As a result, a conventional
crystal displays discrete translational and rotational symmetries,
and its crystal lattices can be mapped onto itself by translational
symmetry or by various other symmetry operations. On the other
hand, a topological crystal does not display discrete translational
or rotational symmetries, because the orientation of the crystal
axes is smoothly changing. This also indicates that the distribu-
tion of dislocations/disclinations introduced into a topological
crystal [as shown in Figure 1 (right)] must be smooth.16,17 When
a topological crystal needs to be bent, geometrical frustration is
relaxed through the inclusion of edge dislocations, and other
types of dislocations, such as screw and mixed dislocations, do
not need to be considered.18�20 However, the interplay between
the global topology of the crystals and the distribution of
dislocations/disclinations is still unclear.

In this article, we report a new type of topological crystals having
several vertices in the tantalum trisulfied (TaS3) system. Using the
electron backscatter diffraction technique, we confirmed the

crystallinity and flatness of the facets in ring and polyhedral crystals
of TaS3 and then found that the orientation of the crystal axes on
the polyhedral ring crystals changes abruptly at several points. To
reveal the growth mechanism of the polyhedral crystals, we
investigated several topological crystals in terms of radius and
width. From the radius�width diagram, we propose a phase
diagram of smooth to polyhedral topological crystals, based on
that predicted by Hayashi et al.21

’EXPERIMENTAL METHODS

The polyhedral ring-crystal samples of TaS3 were synthesized by the
chemical vapor transport (CVT) method. We enclosed the starting
materials (a tantalum wire and sulfur powder in a mole ratio of 1:3) in an
evacuated quartz tube. The tube was heated in a furnace with a
temperature gradient. The temperature of the furnace was set at
560 �C on one side and 600 �C on the other side. The tube was put
in the furnace for several hours, with the starting material on the high-
temperature side. The grain crystals of Ta or TaS3 were transported to
the low-temperature side by convection and grew into crystals there.
After several hours, we picked up the tube and quenched its high-
temperature side in liquid nitrogen because this prevents sulfur from
adhering to the quartz tube. We obtained conventional whisker
(needlelike) crystals, ring/tube crystals, and polyhedral ring crystals.

’RESULTS

We previously discovered polyhedral topological crystals in
MX3 (M = transition metal, X = chalcogen), which are ring
crystals having several vertices, for the first time.22 These crystals

Received: March 31, 2011
Revised: September 9, 2011

ABSTRACT:We have synthesized micrometer-scale polyhedral ring crystals of TaS3 by the
chemical vapor transportation method. The polyhedral ring crystals are closed-loop crystals
with several vertices. We investigated the crystallinity and flatness of the facets by the
electron backscatter diffraction technique and found that the orientation of the crystal axis
changed abruptly at several points. Observing the size of the crystals, we found a new phase
of topological crystals and propose a phase diagram of ring-polyhedral crystals in terms of
radius and thickness. We also propose a mechanism of polygonization in which the vertices
of the polyhedral crystals are formed from concentrated dislocations as a result of distance-
dependent interactions between them.
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were synthesized together with whiskers and ring crystals. Figure 2
shows typical topological crystals and polyhedral topological crystals.
Whisker crystals are usually very thin, with typical thicknesses of
0.1�10 μm and lengths of 10 μm�1 cm, because of the quasi-one-
dimensional crystal structure, where the basic structure of TaS3 is a
triangular prism whose structure is one metallic atom surrounded by
six chalcogen atoms. The longest dimension is parallel to the axis of
symmetry of the triangular prism. Our samples of TaS3 belong to the
orthorhombic system.12 The crystal of TaS3 displays Pmn21 space
group symmetry.23 The lattice constants were found to be a = 36.804
Å, b=15.177Å, and c=3.340Å.The c axis corresponds to the longest
dimension. Ring/tube crystals, as shown in Figure 2a,b, had typical
thicknesses of 0.1�100 μm, widths of 0.1�10 μm, and radii of
1�100μm.The one-dimensional axis is parallel to the circumference.

Shown in Figure 2c,d are scanning electron microscopy
images of typical polyhedral topological crystals. The dimensions
of the polyhedral topological crystal in Figure 2c are 500 nm in
width, 1.8 μm in radius, and 1 μm in thickness. The interior

angles of the vertices are not equal. In the case of Figure 2c, the
crystal is shaped as a nonagon, and in the case of Figure 2d,
the radius of the crystal becomes gradually smaller from 4.5 to
1.0 μm, like a sharpened pencil.

We investigated the orientation of the crystal axes of the ring
and polyhedral crystals as a function of position using electron
backscatter diffraction (EBSD) patterns to confirm their crystal-
linity and the flatness of the facets. The spatial resolution of the
EBSD patterns is several tens of nanometers, depending on the
electron probe radius. We set up ring (Figure 3a) and polyhedral
(Figure 3b) crystals. In Figure 3, the brightness in the map is
proportional to the intensity of the EBSD pattern.24 Note that
the high-crystallinity area shows a high EBSD intensity. Figure 4
shows the crystal misorientation (difference in the orientation of
facets) profile of two crystals, scanned along the green arrow. The
blue line shows the variation in the orientation of the crystal axis
from the initial point of the green circle, and the red line shows
that from an adjacent point. The orientation of the facets changes
smoothly in the ring crystal, whereas significant discrete jumps are
observed at distances of 4, 5, 7, and 9 μm in the polyhedral crystal.

’DISCUSSION

To elucidate the formation mechanism of the polyhedral
structures, we investigated the size distribution of 32 topological
crystals of TaS3, including 7 polyhedral crystals and 25 ring/tube
crystals. We measured their center radius R and width W. The
distribution of the topological crystals is plotted in Figure 5. Each
red square represents a polyhedral ring crystal, and each black
circle represents a smooth ring crystal. Based on this plot, we
became aware that the ring crystals with radii smaller than 2 μm
became polyhedral ring crystals. This suggests that the radius
must play an important role in the localization of dislocations.

We compared our results with the R�W phase diagram of ring
crystals predicted by Hayashi et al., who applied Ginzburg�
Landau theory for superconductivity.21 They predicted three
phases for ring crystals. In phase I, the crystals are free of
dislocations. In phase II, dislocations are introduced into the
ring crystals to relax the bending energy. In phase III, because the
defects are so dense, there is no interplane rigidity. They also
predicted polygonization in phase II. In Figure 5, phase I is
colored purple, phase II is blue and yellow, and phase III is red.
The black area is the forbidden area for whichR <W. To calculate
the phase boundaries, we used the parameters of TaS3

25,26 as γ2

Figure 1. Structure of (left) needle-shaped and (right) ring-shaped
crystals. As a result of expansion and contraction, dislocations are
generated (^ symbols).

Figure 2. Topological crystals and polyhedral topological crystals of
TaS3. (a) Ring and (b) tube of smooth topological crystals. (c) Nonagon
and (d) pencil-shaped polyhedral topological crystals.

Figure 3. Intensity maps of (a) ring and (b) polyhedral crystals of
EBSD obtained using field-emission scanning electron microscopy. The
samples were observed from this perspective.
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≈ 10�2, dx = 0.3 nm, and dy = 2 nm for the equations Rc1 = πW
2/

2γdy and Rc2 = 2πdy
2/γdx in ref 21, where γ

2 is Young’s modulus
divided by shear modulus, dx is the lattice constant in the x
direction, and dy is the lattice constant in the y direction. The
boundary radius Rc2 dividing phase III and phase II is equal to
133.3 nm, and the boundary radius Rlim, which is equal to the
smallest value of Rc1, dividing phase II and phase I is equal to
1138 nm. The boundary Rlim corresponds approximately to the
ring�tube boundary of our results. Hence, the tube crystals
correspond to a clear circle without defects. In the case of ring
crystals containing edge dislocations, the arrangement of them is

nontrivial and is not confirmed.We found that the crystals mostly
became polyhedral crystals for R < 2 μm in the R�W diagram. In
consequence, we drew a boundary between the polyhedral and
ring crystal areas, indicated by the white line between the blue
and yellow areas in Figure 5. In the end, Figure 5 is divided into
four areas; red, purple, blue, and yellow. We discovered experi-
mentally that the vertices are inherent in ring crystals and that the
phase transition from ring to polyhedral crystals is caused by the
variation in radius size.

Our results suggest that the main factor in the polygonization
is the radius-dependent interaction between the edge disloca-
tions. Figure 6 shows the relationship between the interac-
tion energy and the position of dislocations. The red symbols
(^ symbols) represent positions of edge dislocations, and the black
curves show the interaction energy.27 When two dislocations
move on the same crystal line or plane, a repulsive force is exerted
between them. As a result of the dislocation motion, plastic
deformation occurs at an edge of a bulk crystal to reduce the
stress within it. The passage of a dislocation through a bulk crystal
is equivalent to a slip displacement of one part of the bulk crystal.
This is consistent with a bulk crystal, but in the case of topological
crystals, the bullk model is not applicable. Topological crystals
with a closed curve do not have an edge, and hence, slipping
dislocations cannot exit from the crystal. When many disloca-
tions are generated, cylinder-shaped walls of dislocations are
expected to be formed as a result of the arrangement of the
dislocations on parallel lines.16,17 Here, we considered two
dislocations moving on different crystal lines or planes. When
the two dislocations are sufficiently far apart, a repulsive force is
exerted; however, when the distance is short, an attractive force is
exerted. As a result of the attractive interaction, the edge
dislocations become concentrated on a vertical line. This is
called a polygonization wall (Figure 7).28,29 The average distance
between dislocations becomes a function of R. Thus, for a
constant number of edge dislocations, when the radius is large,
a ring crystal is formed with a repulsive force, and when the radius
is small, a polyhedral crystal is formed with an attractive force.

Because the polygonization is controlled by two parameters,
our results are different from the structures of other multifaceted
crystals obtained by self-assembly30,31 in terms of the growth

Figure 4. Misorientation profiles from an initial point (green circle) to green arrows for (left) ring and (right) polyhedral crystals. The blue line shows
the variation in the orientation from the initial point of the green circle, and the red line shows that from an adjacent point. The insets show the
orientations of the crystal axis on each point. The area of the same color corresponds to the same orientation of the crystal axis.

Figure 5. Phase diagrams of topological crystals showing the depen-
dence of the radius and width. Red squares indicate polyhedral crystals,
and black circles indicate ring crystals. The black area shows the range in
which ring-crystal formation is forbidden. The other three areas divided
by two black lines are based onHayashi et al.’s theory.When the radius is
smaller than 2 μm, the crystals become polyhedrons. The boundary
between polyhedral and ring crystals is indicated by a white line.
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mechanism. Similar polyhedral nano- and microstructures were
discovered in graphite in 2000.32 A theoretical calculation of free
energy indicated that their polygonization occurs in graphene sheets
with diameters of less than 15 nm.33 However, the polygoniza-
tion of MX3 topological crystals occurs on the micrometer scale.
Forming corners from a whisker is entirely different from forming
corners from a six-member carbon ring because the former con-
figuration has a one-dimensional line and the latter configura-
tion has a two-dimensional film. The polygonization of MX3 ring
crystals must be caused by a different mechanism. In this context,
we believe that our discovery contains a novel research field of
crystallography. The amount and positions of the defects within
the crystal will be confirmed by the observation of topological
phenomena.

’CONCLUSIONS

In summary, we have discovered polyhedral topological
crystals in the TaS3 system. The formation mechanism is rela-
ted to the edge dislocations arrayed on a vertical line by the
distance-dependent interactions between them. We propose a

polygonization phase in the width versus radius phase diagram
for ring-shaped crystals.
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